Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{7m^{4}\left(m+4\right)}{\left(m+4\right)\left(7m+2\right)}+\frac{3m^{2}\left(7m+2\right)}{\left(m+4\right)\left(7m+2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 7m+2 me m+4 ko \left(m+4\right)\left(7m+2\right). Whakareatia \frac{7m^{4}}{7m+2} ki te \frac{m+4}{m+4}. Whakareatia \frac{3m^{2}}{m+4} ki te \frac{7m+2}{7m+2}.
\frac{7m^{4}\left(m+4\right)+3m^{2}\left(7m+2\right)}{\left(m+4\right)\left(7m+2\right)}
Tā te mea he rite te tauraro o \frac{7m^{4}\left(m+4\right)}{\left(m+4\right)\left(7m+2\right)} me \frac{3m^{2}\left(7m+2\right)}{\left(m+4\right)\left(7m+2\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{7m^{5}+28m^{4}+21m^{3}+6m^{2}}{\left(m+4\right)\left(7m+2\right)}
Mahia ngā whakarea i roto o 7m^{4}\left(m+4\right)+3m^{2}\left(7m+2\right).
\frac{7m^{5}+28m^{4}+21m^{3}+6m^{2}}{7m^{2}+30m+8}
Whakarohaina te \left(m+4\right)\left(7m+2\right).