Aromātai
\sqrt{7}-1\approx 1.645751311
Tauwehe
\sqrt{7} - 1 = 1.645751311
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(7-\sqrt{7}\right)\sqrt{7}}{\left(\sqrt{7}\right)^{2}}
Whakangāwaritia te tauraro o \frac{7-\sqrt{7}}{\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}.
\frac{\left(7-\sqrt{7}\right)\sqrt{7}}{7}
Ko te pūrua o \sqrt{7} ko 7.
\frac{7\sqrt{7}-\left(\sqrt{7}\right)^{2}}{7}
Whakamahia te āhuatanga tohatoha hei whakarea te 7-\sqrt{7} ki te \sqrt{7}.
\frac{7\sqrt{7}-7}{7}
Ko te pūrua o \sqrt{7} ko 7.
\sqrt{7}-1
Whakawehea ia wā o 7\sqrt{7}-7 ki te 7, kia riro ko \sqrt{7}-1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}