Whakaoti mō y
y=51
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(y-3\right)\times 7=\left(y+5\right)\times 6
Tē taea kia ōrite te tāupe y ki tētahi o ngā uara -5,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(y-3\right)\left(y+5\right), arā, te tauraro pātahi he tino iti rawa te kitea o y+5,y-3.
7y-21=\left(y+5\right)\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te y-3 ki te 7.
7y-21=6y+30
Whakamahia te āhuatanga tohatoha hei whakarea te y+5 ki te 6.
7y-21-6y=30
Tangohia te 6y mai i ngā taha e rua.
y-21=30
Pahekotia te 7y me -6y, ka y.
y=30+21
Me tāpiri te 21 ki ngā taha e rua.
y=51
Tāpirihia te 30 ki te 21, ka 51.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}