Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki w
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{7}{\left(w-3\right)\left(w+3\right)}+\frac{2}{w-3}
Tauwehea te w^{2}-9.
\frac{7}{\left(w-3\right)\left(w+3\right)}+\frac{2\left(w+3\right)}{\left(w-3\right)\left(w+3\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(w-3\right)\left(w+3\right) me w-3 ko \left(w-3\right)\left(w+3\right). Whakareatia \frac{2}{w-3} ki te \frac{w+3}{w+3}.
\frac{7+2\left(w+3\right)}{\left(w-3\right)\left(w+3\right)}
Tā te mea he rite te tauraro o \frac{7}{\left(w-3\right)\left(w+3\right)} me \frac{2\left(w+3\right)}{\left(w-3\right)\left(w+3\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{7+2w+6}{\left(w-3\right)\left(w+3\right)}
Mahia ngā whakarea i roto o 7+2\left(w+3\right).
\frac{13+2w}{\left(w-3\right)\left(w+3\right)}
Whakakotahitia ngā kupu rite i 7+2w+6.
\frac{13+2w}{w^{2}-9}
Whakarohaina te \left(w-3\right)\left(w+3\right).
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{7}{\left(w-3\right)\left(w+3\right)}+\frac{2}{w-3})
Tauwehea te w^{2}-9.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{7}{\left(w-3\right)\left(w+3\right)}+\frac{2\left(w+3\right)}{\left(w-3\right)\left(w+3\right)})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(w-3\right)\left(w+3\right) me w-3 ko \left(w-3\right)\left(w+3\right). Whakareatia \frac{2}{w-3} ki te \frac{w+3}{w+3}.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{7+2\left(w+3\right)}{\left(w-3\right)\left(w+3\right)})
Tā te mea he rite te tauraro o \frac{7}{\left(w-3\right)\left(w+3\right)} me \frac{2\left(w+3\right)}{\left(w-3\right)\left(w+3\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{7+2w+6}{\left(w-3\right)\left(w+3\right)})
Mahia ngā whakarea i roto o 7+2\left(w+3\right).
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{13+2w}{\left(w-3\right)\left(w+3\right)})
Whakakotahitia ngā kupu rite i 7+2w+6.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{13+2w}{w^{2}-9})
Whakaarohia te \left(w-3\right)\left(w+3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
\frac{\left(w^{2}-9\right)\frac{\mathrm{d}}{\mathrm{d}w}(2w^{1}+13)-\left(2w^{1}+13\right)\frac{\mathrm{d}}{\mathrm{d}w}(w^{2}-9)}{\left(w^{2}-9\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(w^{2}-9\right)\times 2w^{1-1}-\left(2w^{1}+13\right)\times 2w^{2-1}}{\left(w^{2}-9\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(w^{2}-9\right)\times 2w^{0}-\left(2w^{1}+13\right)\times 2w^{1}}{\left(w^{2}-9\right)^{2}}
Mahia ngā tātaitanga.
\frac{w^{2}\times 2w^{0}-9\times 2w^{0}-\left(2w^{1}\times 2w^{1}+13\times 2w^{1}\right)}{\left(w^{2}-9\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{2w^{2}-9\times 2w^{0}-\left(2\times 2w^{1+1}+13\times 2w^{1}\right)}{\left(w^{2}-9\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{2w^{2}-18w^{0}-\left(4w^{2}+26w^{1}\right)}{\left(w^{2}-9\right)^{2}}
Mahia ngā tātaitanga.
\frac{2w^{2}-18w^{0}-4w^{2}-26w^{1}}{\left(w^{2}-9\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(2-4\right)w^{2}-18w^{0}-26w^{1}}{\left(w^{2}-9\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-2w^{2}-18w^{0}-26w^{1}}{\left(w^{2}-9\right)^{2}}
Tango 4 mai i 2.
\frac{-2w^{2}-18w^{0}-26w}{\left(w^{2}-9\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-2w^{2}-18-26w}{\left(w^{2}-9\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.