Aromātai
\frac{49+10t-t^{2}}{\left(t-3\right)\left(t+7\right)}
Kimi Pārōnaki e ai ki t
-\frac{14\left(t^{2}+4t+29\right)}{\left(\left(t-3\right)\left(t+7\right)\right)^{2}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{7\left(t+7\right)}{\left(t-3\right)\left(t+7\right)}-\frac{t\left(t-3\right)}{\left(t-3\right)\left(t+7\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o t-3 me t+7 ko \left(t-3\right)\left(t+7\right). Whakareatia \frac{7}{t-3} ki te \frac{t+7}{t+7}. Whakareatia \frac{t}{t+7} ki te \frac{t-3}{t-3}.
\frac{7\left(t+7\right)-t\left(t-3\right)}{\left(t-3\right)\left(t+7\right)}
Tā te mea he rite te tauraro o \frac{7\left(t+7\right)}{\left(t-3\right)\left(t+7\right)} me \frac{t\left(t-3\right)}{\left(t-3\right)\left(t+7\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{7t+49-t^{2}+3t}{\left(t-3\right)\left(t+7\right)}
Mahia ngā whakarea i roto o 7\left(t+7\right)-t\left(t-3\right).
\frac{10t+49-t^{2}}{\left(t-3\right)\left(t+7\right)}
Whakakotahitia ngā kupu rite i 7t+49-t^{2}+3t.
\frac{10t+49-t^{2}}{t^{2}+4t-21}
Whakarohaina te \left(t-3\right)\left(t+7\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}