Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{7\left(t+7\right)}{\left(t-3\right)\left(t+7\right)}-\frac{t\left(t-3\right)}{\left(t-3\right)\left(t+7\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o t-3 me t+7 ko \left(t-3\right)\left(t+7\right). Whakareatia \frac{7}{t-3} ki te \frac{t+7}{t+7}. Whakareatia \frac{t}{t+7} ki te \frac{t-3}{t-3}.
\frac{7\left(t+7\right)-t\left(t-3\right)}{\left(t-3\right)\left(t+7\right)}
Tā te mea he rite te tauraro o \frac{7\left(t+7\right)}{\left(t-3\right)\left(t+7\right)} me \frac{t\left(t-3\right)}{\left(t-3\right)\left(t+7\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{7t+49-t^{2}+3t}{\left(t-3\right)\left(t+7\right)}
Mahia ngā whakarea i roto o 7\left(t+7\right)-t\left(t-3\right).
\frac{10t+49-t^{2}}{\left(t-3\right)\left(t+7\right)}
Whakakotahitia ngā kupu rite i 7t+49-t^{2}+3t.
\frac{10t+49-t^{2}}{t^{2}+4t-21}
Whakarohaina te \left(t-3\right)\left(t+7\right).