Whakaoti mō b
b = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Tohaina
Kua tāruatia ki te papatopenga
5\times 7=\left(b+5\right)\times 10
Tē taea kia ōrite te tāupe b ki -5 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 5\left(b+5\right), arā, te tauraro pātahi he tino iti rawa te kitea o b+5,5.
35=\left(b+5\right)\times 10
Whakareatia te 5 ki te 7, ka 35.
35=10b+50
Whakamahia te āhuatanga tohatoha hei whakarea te b+5 ki te 10.
10b+50=35
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
10b=35-50
Tangohia te 50 mai i ngā taha e rua.
10b=-15
Tangohia te 50 i te 35, ka -15.
b=\frac{-15}{10}
Whakawehea ngā taha e rua ki te 10.
b=-\frac{3}{2}
Whakahekea te hautanga \frac{-15}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}