Whakaoti mō x
x = \frac{7}{4} = 1\frac{3}{4} = 1.75
Graph
Tohaina
Kua tāruatia ki te papatopenga
7-9x+3=3\left(-2x+4\right)+x-9
Me whakarea ngā taha e rua o te whārite ki te 9, arā, te tauraro pātahi he tino iti rawa te kitea o 9,3.
10-9x=3\left(-2x+4\right)+x-9
Tāpirihia te 7 ki te 3, ka 10.
10-9x=-6x+12+x-9
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te -2x+4.
10-9x=-5x+12-9
Pahekotia te -6x me x, ka -5x.
10-9x=-5x+3
Tangohia te 9 i te 12, ka 3.
10-9x+5x=3
Me tāpiri te 5x ki ngā taha e rua.
10-4x=3
Pahekotia te -9x me 5x, ka -4x.
-4x=3-10
Tangohia te 10 mai i ngā taha e rua.
-4x=-7
Tangohia te 10 i te 3, ka -7.
x=\frac{-7}{-4}
Whakawehea ngā taha e rua ki te -4.
x=\frac{7}{4}
Ka taea te hautanga \frac{-7}{-4} te whakamāmā ki te \frac{7}{4} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}