Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{7\left(9-\sqrt{13}\right)}{\left(9+\sqrt{13}\right)\left(9-\sqrt{13}\right)}
Whakangāwaritia te tauraro o \frac{7}{9+\sqrt{13}} mā te whakarea i te taurunga me te tauraro ki te 9-\sqrt{13}.
\frac{7\left(9-\sqrt{13}\right)}{9^{2}-\left(\sqrt{13}\right)^{2}}
Whakaarohia te \left(9+\sqrt{13}\right)\left(9-\sqrt{13}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\left(9-\sqrt{13}\right)}{81-13}
Pūrua 9. Pūrua \sqrt{13}.
\frac{7\left(9-\sqrt{13}\right)}{68}
Tangohia te 13 i te 81, ka 68.
\frac{63-7\sqrt{13}}{68}
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te 9-\sqrt{13}.