Aromātai
\frac{215}{352}\approx 0.610795455
Tauwehe
\frac{5 \cdot 43}{2 ^ {5} \cdot 11} = 0.6107954545454546
Tohaina
Kua tāruatia ki te papatopenga
\frac{7\times 12}{8\times 11}-\frac{3}{8}\times \frac{11}{12}
Me whakarea te \frac{7}{8} ki te \frac{12}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{84}{88}-\frac{3}{8}\times \frac{11}{12}
Mahia ngā whakarea i roto i te hautanga \frac{7\times 12}{8\times 11}.
\frac{21}{22}-\frac{3}{8}\times \frac{11}{12}
Whakahekea te hautanga \frac{84}{88} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{21}{22}-\frac{3\times 11}{8\times 12}
Me whakarea te \frac{3}{8} ki te \frac{11}{12} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{21}{22}-\frac{33}{96}
Mahia ngā whakarea i roto i te hautanga \frac{3\times 11}{8\times 12}.
\frac{21}{22}-\frac{11}{32}
Whakahekea te hautanga \frac{33}{96} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{336}{352}-\frac{121}{352}
Ko te maha noa iti rawa atu o 22 me 32 ko 352. Me tahuri \frac{21}{22} me \frac{11}{32} ki te hautau me te tautūnga 352.
\frac{336-121}{352}
Tā te mea he rite te tauraro o \frac{336}{352} me \frac{121}{352}, me tango rāua mā te tango i ō raua taurunga.
\frac{215}{352}
Tangohia te 121 i te 336, ka 215.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}