Aromātai
\frac{4}{3}\approx 1.333333333
Tauwehe
\frac{2 ^ {2}}{3} = 1\frac{1}{3} = 1.3333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{7}{6}+\frac{4}{13}\left(\frac{16}{24}-\frac{3}{24}\right)
Ko te maha noa iti rawa atu o 3 me 8 ko 24. Me tahuri \frac{2}{3} me \frac{1}{8} ki te hautau me te tautūnga 24.
\frac{7}{6}+\frac{4}{13}\times \frac{16-3}{24}
Tā te mea he rite te tauraro o \frac{16}{24} me \frac{3}{24}, me tango rāua mā te tango i ō raua taurunga.
\frac{7}{6}+\frac{4}{13}\times \frac{13}{24}
Tangohia te 3 i te 16, ka 13.
\frac{7}{6}+\frac{4\times 13}{13\times 24}
Me whakarea te \frac{4}{13} ki te \frac{13}{24} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{7}{6}+\frac{4}{24}
Me whakakore tahi te 13 i te taurunga me te tauraro.
\frac{7}{6}+\frac{1}{6}
Whakahekea te hautanga \frac{4}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{7+1}{6}
Tā te mea he rite te tauraro o \frac{7}{6} me \frac{1}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{8}{6}
Tāpirihia te 7 ki te 1, ka 8.
\frac{4}{3}
Whakahekea te hautanga \frac{8}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}