Whakaoti mō x
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
14+2-x=1+2x-3\left(1-x\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,6,2.
16-x=1+2x-3\left(1-x\right)
Tāpirihia te 14 ki te 2, ka 16.
16-x=1+2x-3+3x
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 1-x.
16-x=-2+2x+3x
Tangohia te 3 i te 1, ka -2.
16-x=-2+5x
Pahekotia te 2x me 3x, ka 5x.
16-x-5x=-2
Tangohia te 5x mai i ngā taha e rua.
16-6x=-2
Pahekotia te -x me -5x, ka -6x.
-6x=-2-16
Tangohia te 16 mai i ngā taha e rua.
-6x=-18
Tangohia te 16 i te -2, ka -18.
x=\frac{-18}{-6}
Whakawehea ngā taha e rua ki te -6.
x=3
Whakawehea te -18 ki te -6, kia riro ko 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}