Whakaoti mō x
x=-8
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(2x+3\right)\times 7-\left(2x-3\right)\times 5=4
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{3}{2},\frac{3}{2} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(2x-3\right)\left(2x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x-3,3+2x,4x^{2}-9.
14x+21-\left(2x-3\right)\times 5=4
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+3 ki te 7.
14x+21-\left(10x-15\right)=4
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-3 ki te 5.
14x+21-10x+15=4
Hei kimi i te tauaro o 10x-15, kimihia te tauaro o ia taurangi.
4x+21+15=4
Pahekotia te 14x me -10x, ka 4x.
4x+36=4
Tāpirihia te 21 ki te 15, ka 36.
4x=4-36
Tangohia te 36 mai i ngā taha e rua.
4x=-32
Tangohia te 36 i te 4, ka -32.
x=\frac{-32}{4}
Whakawehea ngā taha e rua ki te 4.
x=-8
Whakawehea te -32 ki te 4, kia riro ko -8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}