Aromātai
\frac{353}{30}\approx 11.766666667
Tauwehe
\frac{353}{2 \cdot 3 \cdot 5} = 11\frac{23}{30} = 11.766666666666667
Tohaina
Kua tāruatia ki te papatopenga
\frac{7\times 2}{12\times 7}+\frac{\frac{1}{3}}{\frac{5}{6}}\left(\frac{2}{3}+\frac{1}{6}+\frac{3}{8}\right)\times 24
Me whakarea te \frac{7}{12} ki te \frac{2}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2}{12}+\frac{\frac{1}{3}}{\frac{5}{6}}\left(\frac{2}{3}+\frac{1}{6}+\frac{3}{8}\right)\times 24
Me whakakore tahi te 7 i te taurunga me te tauraro.
\frac{1}{6}+\frac{\frac{1}{3}}{\frac{5}{6}}\left(\frac{2}{3}+\frac{1}{6}+\frac{3}{8}\right)\times 24
Whakahekea te hautanga \frac{2}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1}{6}+\frac{1}{3}\times \frac{6}{5}\left(\frac{2}{3}+\frac{1}{6}+\frac{3}{8}\right)\times 24
Whakawehe \frac{1}{3} ki te \frac{5}{6} mā te whakarea \frac{1}{3} ki te tau huripoki o \frac{5}{6}.
\frac{1}{6}+\frac{1\times 6}{3\times 5}\left(\frac{2}{3}+\frac{1}{6}+\frac{3}{8}\right)\times 24
Me whakarea te \frac{1}{3} ki te \frac{6}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{6}+\frac{6}{15}\left(\frac{2}{3}+\frac{1}{6}+\frac{3}{8}\right)\times 24
Mahia ngā whakarea i roto i te hautanga \frac{1\times 6}{3\times 5}.
\frac{1}{6}+\frac{2}{5}\left(\frac{2}{3}+\frac{1}{6}+\frac{3}{8}\right)\times 24
Whakahekea te hautanga \frac{6}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{1}{6}+\frac{2}{5}\left(\frac{4}{6}+\frac{1}{6}+\frac{3}{8}\right)\times 24
Ko te maha noa iti rawa atu o 3 me 6 ko 6. Me tahuri \frac{2}{3} me \frac{1}{6} ki te hautau me te tautūnga 6.
\frac{1}{6}+\frac{2}{5}\left(\frac{4+1}{6}+\frac{3}{8}\right)\times 24
Tā te mea he rite te tauraro o \frac{4}{6} me \frac{1}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{6}+\frac{2}{5}\left(\frac{5}{6}+\frac{3}{8}\right)\times 24
Tāpirihia te 4 ki te 1, ka 5.
\frac{1}{6}+\frac{2}{5}\left(\frac{20}{24}+\frac{9}{24}\right)\times 24
Ko te maha noa iti rawa atu o 6 me 8 ko 24. Me tahuri \frac{5}{6} me \frac{3}{8} ki te hautau me te tautūnga 24.
\frac{1}{6}+\frac{2}{5}\times \frac{20+9}{24}\times 24
Tā te mea he rite te tauraro o \frac{20}{24} me \frac{9}{24}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{6}+\frac{2}{5}\times \frac{29}{24}\times 24
Tāpirihia te 20 ki te 9, ka 29.
\frac{1}{6}+\frac{2\times 29}{5\times 24}\times 24
Me whakarea te \frac{2}{5} ki te \frac{29}{24} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{6}+\frac{58}{120}\times 24
Mahia ngā whakarea i roto i te hautanga \frac{2\times 29}{5\times 24}.
\frac{1}{6}+\frac{29}{60}\times 24
Whakahekea te hautanga \frac{58}{120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1}{6}+\frac{29\times 24}{60}
Tuhia te \frac{29}{60}\times 24 hei hautanga kotahi.
\frac{1}{6}+\frac{696}{60}
Whakareatia te 29 ki te 24, ka 696.
\frac{1}{6}+\frac{58}{5}
Whakahekea te hautanga \frac{696}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
\frac{5}{30}+\frac{348}{30}
Ko te maha noa iti rawa atu o 6 me 5 ko 30. Me tahuri \frac{1}{6} me \frac{58}{5} ki te hautau me te tautūnga 30.
\frac{5+348}{30}
Tā te mea he rite te tauraro o \frac{5}{30} me \frac{348}{30}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{353}{30}
Tāpirihia te 5 ki te 348, ka 353.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}