Aromātai
\frac{4}{3}\approx 1.333333333
Tauwehe
\frac{2 ^ {2}}{3} = 1\frac{1}{3} = 1.3333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{7}{12}\times \frac{4}{3}+\frac{5}{12}\times \frac{4}{3}
Whakawehe \frac{7}{12} ki te \frac{3}{4} mā te whakarea \frac{7}{12} ki te tau huripoki o \frac{3}{4}.
\frac{7\times 4}{12\times 3}+\frac{5}{12}\times \frac{4}{3}
Me whakarea te \frac{7}{12} ki te \frac{4}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{28}{36}+\frac{5}{12}\times \frac{4}{3}
Mahia ngā whakarea i roto i te hautanga \frac{7\times 4}{12\times 3}.
\frac{7}{9}+\frac{5}{12}\times \frac{4}{3}
Whakahekea te hautanga \frac{28}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{7}{9}+\frac{5\times 4}{12\times 3}
Me whakarea te \frac{5}{12} ki te \frac{4}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{7}{9}+\frac{20}{36}
Mahia ngā whakarea i roto i te hautanga \frac{5\times 4}{12\times 3}.
\frac{7}{9}+\frac{5}{9}
Whakahekea te hautanga \frac{20}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{7+5}{9}
Tā te mea he rite te tauraro o \frac{7}{9} me \frac{5}{9}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{12}{9}
Tāpirihia te 7 ki te 5, ka 12.
\frac{4}{3}
Whakahekea te hautanga \frac{12}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}