Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{7\left(-10+\sqrt{2}\right)}{\left(-10-\sqrt{2}\right)\left(-10+\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{7}{-10-\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te -10+\sqrt{2}.
\frac{7\left(-10+\sqrt{2}\right)}{\left(-10\right)^{2}-\left(\sqrt{2}\right)^{2}}
Whakaarohia te \left(-10-\sqrt{2}\right)\left(-10+\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\left(-10+\sqrt{2}\right)}{100-2}
Pūrua -10. Pūrua \sqrt{2}.
\frac{7\left(-10+\sqrt{2}\right)}{98}
Tangohia te 2 i te 100, ka 98.
\frac{1}{14}\left(-10+\sqrt{2}\right)
Whakawehea te 7\left(-10+\sqrt{2}\right) ki te 98, kia riro ko \frac{1}{14}\left(-10+\sqrt{2}\right).
\frac{1}{14}\left(-10\right)+\frac{1}{14}\sqrt{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{14} ki te -10+\sqrt{2}.
\frac{-10}{14}+\frac{1}{14}\sqrt{2}
Whakareatia te \frac{1}{14} ki te -10, ka \frac{-10}{14}.
-\frac{5}{7}+\frac{1}{14}\sqrt{2}
Whakahekea te hautanga \frac{-10}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.