Manatoko
pono
Tohaina
Kua tāruatia ki te papatopenga
72\times \frac{\frac{7\times 360+97}{360}}{0.2}=36\times 72+25
Whakareatia ngā taha e rua o te whārite ki te 72.
72\times \frac{7\times 360+97}{360\times 0.2}=36\times 72+25
Tuhia te \frac{\frac{7\times 360+97}{360}}{0.2} hei hautanga kotahi.
72\times \frac{2520+97}{360\times 0.2}=36\times 72+25
Whakareatia te 7 ki te 360, ka 2520.
72\times \frac{2617}{360\times 0.2}=36\times 72+25
Tāpirihia te 2520 ki te 97, ka 2617.
72\times \frac{2617}{72}=36\times 72+25
Whakareatia te 360 ki te 0.2, ka 72.
2617=36\times 72+25
Me whakakore te 72 me te 72.
2617=2592+25
Whakareatia te 36 ki te 72, ka 2592.
2617=2617
Tāpirihia te 2592 ki te 25, ka 2617.
\text{true}
Whakatauritea te 2617 me te 2617.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}