Aromātai
\frac{28\sqrt{6}}{43}\approx 1.595016577
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(7+\sqrt{6}\right)\left(7+\sqrt{6}\right)}{\left(7-\sqrt{6}\right)\left(7+\sqrt{6}\right)}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Whakangāwaritia te tauraro o \frac{7+\sqrt{6}}{7-\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te 7+\sqrt{6}.
\frac{\left(7+\sqrt{6}\right)\left(7+\sqrt{6}\right)}{7^{2}-\left(\sqrt{6}\right)^{2}}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Whakaarohia te \left(7-\sqrt{6}\right)\left(7+\sqrt{6}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7+\sqrt{6}\right)\left(7+\sqrt{6}\right)}{49-6}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Pūrua 7. Pūrua \sqrt{6}.
\frac{\left(7+\sqrt{6}\right)\left(7+\sqrt{6}\right)}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Tangohia te 6 i te 49, ka 43.
\frac{\left(7+\sqrt{6}\right)^{2}}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Whakareatia te 7+\sqrt{6} ki te 7+\sqrt{6}, ka \left(7+\sqrt{6}\right)^{2}.
\frac{49+14\sqrt{6}+\left(\sqrt{6}\right)^{2}}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(7+\sqrt{6}\right)^{2}.
\frac{49+14\sqrt{6}+6}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Ko te pūrua o \sqrt{6} ko 6.
\frac{55+14\sqrt{6}}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Tāpirihia te 49 ki te 6, ka 55.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)\left(7-\sqrt{6}\right)}{\left(7+\sqrt{6}\right)\left(7-\sqrt{6}\right)}
Whakangāwaritia te tauraro o \frac{7-\sqrt{6}}{7+\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te 7-\sqrt{6}.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)\left(7-\sqrt{6}\right)}{7^{2}-\left(\sqrt{6}\right)^{2}}
Whakaarohia te \left(7+\sqrt{6}\right)\left(7-\sqrt{6}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)\left(7-\sqrt{6}\right)}{49-6}
Pūrua 7. Pūrua \sqrt{6}.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)\left(7-\sqrt{6}\right)}{43}
Tangohia te 6 i te 49, ka 43.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)^{2}}{43}
Whakareatia te 7-\sqrt{6} ki te 7-\sqrt{6}, ka \left(7-\sqrt{6}\right)^{2}.
\frac{55+14\sqrt{6}}{43}-\frac{49-14\sqrt{6}+\left(\sqrt{6}\right)^{2}}{43}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(7-\sqrt{6}\right)^{2}.
\frac{55+14\sqrt{6}}{43}-\frac{49-14\sqrt{6}+6}{43}
Ko te pūrua o \sqrt{6} ko 6.
\frac{55+14\sqrt{6}}{43}-\frac{55-14\sqrt{6}}{43}
Tāpirihia te 49 ki te 6, ka 55.
\frac{55+14\sqrt{6}-\left(55-14\sqrt{6}\right)}{43}
Tā te mea he rite te tauraro o \frac{55+14\sqrt{6}}{43} me \frac{55-14\sqrt{6}}{43}, me tango rāua mā te tango i ō raua taurunga.
\frac{55+14\sqrt{6}-55+14\sqrt{6}}{43}
Mahia ngā whakarea i roto o 55+14\sqrt{6}-\left(55-14\sqrt{6}\right).
\frac{28\sqrt{6}}{43}
Mahia ngā tātaitai i roto o 55+14\sqrt{6}-55+14\sqrt{6}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}