Whakaoti mō x
x = \frac{4216}{3} = 1405\frac{1}{3} \approx 1405.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{13}{20}x=\frac{85}{100}\left(2480-x\right)
Whakahekea te hautanga \frac{65}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{13}{20}x=\frac{17}{20}\left(2480-x\right)
Whakahekea te hautanga \frac{85}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{13}{20}x=\frac{17}{20}\times 2480+\frac{17}{20}\left(-1\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{17}{20} ki te 2480-x.
\frac{13}{20}x=\frac{17\times 2480}{20}+\frac{17}{20}\left(-1\right)x
Tuhia te \frac{17}{20}\times 2480 hei hautanga kotahi.
\frac{13}{20}x=\frac{42160}{20}+\frac{17}{20}\left(-1\right)x
Whakareatia te 17 ki te 2480, ka 42160.
\frac{13}{20}x=2108+\frac{17}{20}\left(-1\right)x
Whakawehea te 42160 ki te 20, kia riro ko 2108.
\frac{13}{20}x=2108-\frac{17}{20}x
Whakareatia te \frac{17}{20} ki te -1, ka -\frac{17}{20}.
\frac{13}{20}x+\frac{17}{20}x=2108
Me tāpiri te \frac{17}{20}x ki ngā taha e rua.
\frac{3}{2}x=2108
Pahekotia te \frac{13}{20}x me \frac{17}{20}x, ka \frac{3}{2}x.
x=2108\times \frac{2}{3}
Me whakarea ngā taha e rua ki te \frac{2}{3}, te tau utu o \frac{3}{2}.
x=\frac{2108\times 2}{3}
Tuhia te 2108\times \frac{2}{3} hei hautanga kotahi.
x=\frac{4216}{3}
Whakareatia te 2108 ki te 2, ka 4216.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}