Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(64+\left(n-1\right)\times 2\right)n=858n
Tē taea kia ōrite te tāupe n ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te n.
\left(64+2n-2\right)n=858n
Whakamahia te āhuatanga tohatoha hei whakarea te n-1 ki te 2.
\left(62+2n\right)n=858n
Tangohia te 2 i te 64, ka 62.
62n+2n^{2}=858n
Whakamahia te āhuatanga tohatoha hei whakarea te 62+2n ki te n.
62n+2n^{2}-858n=0
Tangohia te 858n mai i ngā taha e rua.
-796n+2n^{2}=0
Pahekotia te 62n me -858n, ka -796n.
n\left(-796+2n\right)=0
Tauwehea te n.
n=0 n=398
Hei kimi otinga whārite, me whakaoti te n=0 me te -796+2n=0.
n=398
Tē taea kia ōrite te tāupe n ki 0.
\left(64+\left(n-1\right)\times 2\right)n=858n
Tē taea kia ōrite te tāupe n ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te n.
\left(64+2n-2\right)n=858n
Whakamahia te āhuatanga tohatoha hei whakarea te n-1 ki te 2.
\left(62+2n\right)n=858n
Tangohia te 2 i te 64, ka 62.
62n+2n^{2}=858n
Whakamahia te āhuatanga tohatoha hei whakarea te 62+2n ki te n.
62n+2n^{2}-858n=0
Tangohia te 858n mai i ngā taha e rua.
-796n+2n^{2}=0
Pahekotia te 62n me -858n, ka -796n.
2n^{2}-796n=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-\left(-796\right)±\sqrt{\left(-796\right)^{2}}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -796 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-796\right)±796}{2\times 2}
Tuhia te pūtakerua o te \left(-796\right)^{2}.
n=\frac{796±796}{2\times 2}
Ko te tauaro o -796 ko 796.
n=\frac{796±796}{4}
Whakareatia 2 ki te 2.
n=\frac{1592}{4}
Nā, me whakaoti te whārite n=\frac{796±796}{4} ina he tāpiri te ±. Tāpiri 796 ki te 796.
n=398
Whakawehe 1592 ki te 4.
n=\frac{0}{4}
Nā, me whakaoti te whārite n=\frac{796±796}{4} ina he tango te ±. Tango 796 mai i 796.
n=0
Whakawehe 0 ki te 4.
n=398 n=0
Kua oti te whārite te whakatau.
n=398
Tē taea kia ōrite te tāupe n ki 0.
\left(64+\left(n-1\right)\times 2\right)n=858n
Tē taea kia ōrite te tāupe n ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te n.
\left(64+2n-2\right)n=858n
Whakamahia te āhuatanga tohatoha hei whakarea te n-1 ki te 2.
\left(62+2n\right)n=858n
Tangohia te 2 i te 64, ka 62.
62n+2n^{2}=858n
Whakamahia te āhuatanga tohatoha hei whakarea te 62+2n ki te n.
62n+2n^{2}-858n=0
Tangohia te 858n mai i ngā taha e rua.
-796n+2n^{2}=0
Pahekotia te 62n me -858n, ka -796n.
2n^{2}-796n=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{2n^{2}-796n}{2}=\frac{0}{2}
Whakawehea ngā taha e rua ki te 2.
n^{2}+\left(-\frac{796}{2}\right)n=\frac{0}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
n^{2}-398n=\frac{0}{2}
Whakawehe -796 ki te 2.
n^{2}-398n=0
Whakawehe 0 ki te 2.
n^{2}-398n+\left(-199\right)^{2}=\left(-199\right)^{2}
Whakawehea te -398, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -199. Nā, tāpiria te pūrua o te -199 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}-398n+39601=39601
Pūrua -199.
\left(n-199\right)^{2}=39601
Tauwehea n^{2}-398n+39601. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-199\right)^{2}}=\sqrt{39601}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n-199=199 n-199=-199
Whakarūnātia.
n=398 n=0
Me tāpiri 199 ki ngā taha e rua o te whārite.
n=398
Tē taea kia ōrite te tāupe n ki 0.