Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{60^{1}x^{2}y^{3}}{12^{1}x^{1}y^{1}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{60^{1}}{12^{1}}x^{2-1}y^{3-1}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{60^{1}}{12^{1}}x^{1}y^{3-1}
Tango 1 mai i 2.
\frac{60^{1}}{12^{1}}xy^{2}
Tango 1 mai i 3.
5xy^{2}
Whakawehe 60 ki te 12.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{60y^{3}}{12y}x^{2-1})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(5y^{2}x^{1})
Mahia ngā tātaitanga.
5y^{2}x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
5y^{2}x^{0}
Mahia ngā tātaitanga.
5y^{2}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
5y^{2}
Mō tētahi kupu t, t\times 1=t me 1t=t.