Whakaoti mō x (complex solution)
x\in \mathrm{C}\setminus -6,6,0,-12,3
Whakaoti mō x
x\in \mathrm{R}\setminus 6,-6,0,3,-12
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{6}\left(x+6\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -6,0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2x\left(x+6\right).
\left(\frac{1}{6}x+1\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{6} ki te x+6.
\left(3x+\frac{1}{6}x^{2}+12\right)\times \frac{6x-36}{x^{2}-36}=x+12
Whakamahia te āhuatanga tuaritanga hei whakarea te \frac{1}{6}x+1 ki te 12+x ka whakakotahi i ngā kupu rite.
3x\times \frac{6x-36}{x^{2}-36}+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
Whakamahia te āhuatanga tohatoha hei whakarea te 3x+\frac{1}{6}x^{2}+12 ki te \frac{6x-36}{x^{2}-36}.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
Tuhia te 3\times \frac{6x-36}{x^{2}-36} hei hautanga kotahi.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+12\times \frac{6x-36}{x^{2}-36}=x+12
Me whakarea te \frac{1}{6} ki te \frac{6x-36}{x^{2}-36} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Tuhia te 12\times \frac{6x-36}{x^{2}-36} hei hautanga kotahi.
\frac{18x-108}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 6x-36.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Tuhia te \frac{18x-108}{x^{2}-36}x hei hautanga kotahi.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6\left(x-6\right)}{6\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{6x-36}{6\left(x^{2}-36\right)}.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Me whakakore tahi te 6 i te taurunga me te tauraro.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Tuhia te \frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2} hei hautanga kotahi.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Whakamahia te āhuatanga tohatoha hei whakarea te 12 ki te 6x-36.
\frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Tauwehea te x^{2}-36.
\frac{\left(18x-108\right)x+\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Tā te mea he rite te tauraro o \frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)} me \frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{18x^{2}-108x+x^{3}-6x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Mahia ngā whakarea i roto o \left(18x-108\right)x+\left(x-6\right)x^{2}.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Whakakotahitia ngā kupu rite i 18x^{2}-108x+x^{3}-6x^{2}.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
Tauwehea te x^{2}-36.
\frac{12x^{2}-108x+x^{3}+72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
Tā te mea he rite te tauraro o \frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)} me \frac{72x-432}{\left(x-6\right)\left(x+6\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}=x+12
Whakakotahitia ngā kupu rite i 12x^{2}-108x+x^{3}+72x-432.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}=x+12
Whakaarohia te \left(x-6\right)\left(x+6\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 6.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}-x=12
Tangohia te x mai i ngā taha e rua.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-x=12
Tauwehea te x^{2}-36.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-\frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x ki te \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}.
\frac{12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
Tā te mea he rite te tauraro o \frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)} me \frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x}{\left(x-6\right)\left(x+6\right)}=12
Mahia ngā whakarea i roto o 12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right).
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}=12
Whakakotahitia ngā kupu rite i 12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-12=0
Tangohia te 12 mai i ngā taha e rua.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-\frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 12 ki te \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}.
\frac{12x^{2}-432-12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
Tā te mea he rite te tauraro o \frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)} me \frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{12x^{2}-432-12x^{2}-72x+72x+432}{\left(x-6\right)\left(x+6\right)}=0
Mahia ngā whakarea i roto o 12x^{2}-432-12\left(x-6\right)\left(x+6\right).
\frac{0}{\left(x-6\right)\left(x+6\right)}=0
Whakakotahitia ngā kupu rite i 12x^{2}-432-12x^{2}-72x+72x+432.
0=0
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -6,6 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(x-6\right)\left(x+6\right).
x\in \mathrm{C}
He pono tēnei mō tētahi x ahakoa.
x\in \mathrm{C}\setminus -6,0,6
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -6,6,0.
\frac{1}{6}\left(x+6\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -6,0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2x\left(x+6\right).
\left(\frac{1}{6}x+1\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{6} ki te x+6.
\left(3x+\frac{1}{6}x^{2}+12\right)\times \frac{6x-36}{x^{2}-36}=x+12
Whakamahia te āhuatanga tuaritanga hei whakarea te \frac{1}{6}x+1 ki te 12+x ka whakakotahi i ngā kupu rite.
3x\times \frac{6x-36}{x^{2}-36}+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
Whakamahia te āhuatanga tohatoha hei whakarea te 3x+\frac{1}{6}x^{2}+12 ki te \frac{6x-36}{x^{2}-36}.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
Tuhia te 3\times \frac{6x-36}{x^{2}-36} hei hautanga kotahi.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+12\times \frac{6x-36}{x^{2}-36}=x+12
Me whakarea te \frac{1}{6} ki te \frac{6x-36}{x^{2}-36} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Tuhia te 12\times \frac{6x-36}{x^{2}-36} hei hautanga kotahi.
\frac{18x-108}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 6x-36.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Tuhia te \frac{18x-108}{x^{2}-36}x hei hautanga kotahi.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6\left(x-6\right)}{6\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{6x-36}{6\left(x^{2}-36\right)}.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Me whakakore tahi te 6 i te taurunga me te tauraro.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Tuhia te \frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2} hei hautanga kotahi.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Whakamahia te āhuatanga tohatoha hei whakarea te 12 ki te 6x-36.
\frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Tauwehea te x^{2}-36.
\frac{\left(18x-108\right)x+\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Tā te mea he rite te tauraro o \frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)} me \frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{18x^{2}-108x+x^{3}-6x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Mahia ngā whakarea i roto o \left(18x-108\right)x+\left(x-6\right)x^{2}.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Whakakotahitia ngā kupu rite i 18x^{2}-108x+x^{3}-6x^{2}.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
Tauwehea te x^{2}-36.
\frac{12x^{2}-108x+x^{3}+72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
Tā te mea he rite te tauraro o \frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)} me \frac{72x-432}{\left(x-6\right)\left(x+6\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}=x+12
Whakakotahitia ngā kupu rite i 12x^{2}-108x+x^{3}+72x-432.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}=x+12
Whakaarohia te \left(x-6\right)\left(x+6\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 6.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}-x=12
Tangohia te x mai i ngā taha e rua.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-x=12
Tauwehea te x^{2}-36.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-\frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x ki te \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}.
\frac{12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
Tā te mea he rite te tauraro o \frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)} me \frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x}{\left(x-6\right)\left(x+6\right)}=12
Mahia ngā whakarea i roto o 12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right).
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}=12
Whakakotahitia ngā kupu rite i 12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-12=0
Tangohia te 12 mai i ngā taha e rua.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-\frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 12 ki te \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}.
\frac{12x^{2}-432-12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
Tā te mea he rite te tauraro o \frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)} me \frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{12x^{2}-432-12x^{2}-72x+72x+432}{\left(x-6\right)\left(x+6\right)}=0
Mahia ngā whakarea i roto o 12x^{2}-432-12\left(x-6\right)\left(x+6\right).
\frac{0}{\left(x-6\right)\left(x+6\right)}=0
Whakakotahitia ngā kupu rite i 12x^{2}-432-12x^{2}-72x+72x+432.
0=0
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -6,6 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(x-6\right)\left(x+6\right).
x\in \mathrm{R}
He pono tēnei mō tētahi x ahakoa.
x\in \mathrm{R}\setminus -6,0,6
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -6,6,0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}