Whakaoti mō x
x=\frac{\sqrt{985}-31}{2}\approx 0.192354826
x=\frac{-\sqrt{985}-31}{2}\approx -31.192354826
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
\frac { 6 x } { x + 1 } = \frac { 6 - x } { 6 }
Tohaina
Kua tāruatia ki te papatopenga
6\times 6x=\left(x+1\right)\left(6-x\right)
Tē taea kia ōrite te tāupe x ki -1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 6\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,6.
36x=\left(x+1\right)\left(6-x\right)
Whakareatia te 6 ki te 6, ka 36.
36x=5x-x^{2}+6
Whakamahia te āhuatanga tuaritanga hei whakarea te x+1 ki te 6-x ka whakakotahi i ngā kupu rite.
36x-5x=-x^{2}+6
Tangohia te 5x mai i ngā taha e rua.
31x=-x^{2}+6
Pahekotia te 36x me -5x, ka 31x.
31x+x^{2}=6
Me tāpiri te x^{2} ki ngā taha e rua.
31x+x^{2}-6=0
Tangohia te 6 mai i ngā taha e rua.
x^{2}+31x-6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-31±\sqrt{31^{2}-4\left(-6\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 31 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-31±\sqrt{961-4\left(-6\right)}}{2}
Pūrua 31.
x=\frac{-31±\sqrt{961+24}}{2}
Whakareatia -4 ki te -6.
x=\frac{-31±\sqrt{985}}{2}
Tāpiri 961 ki te 24.
x=\frac{\sqrt{985}-31}{2}
Nā, me whakaoti te whārite x=\frac{-31±\sqrt{985}}{2} ina he tāpiri te ±. Tāpiri -31 ki te \sqrt{985}.
x=\frac{-\sqrt{985}-31}{2}
Nā, me whakaoti te whārite x=\frac{-31±\sqrt{985}}{2} ina he tango te ±. Tango \sqrt{985} mai i -31.
x=\frac{\sqrt{985}-31}{2} x=\frac{-\sqrt{985}-31}{2}
Kua oti te whārite te whakatau.
6\times 6x=\left(x+1\right)\left(6-x\right)
Tē taea kia ōrite te tāupe x ki -1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 6\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,6.
36x=\left(x+1\right)\left(6-x\right)
Whakareatia te 6 ki te 6, ka 36.
36x=5x-x^{2}+6
Whakamahia te āhuatanga tuaritanga hei whakarea te x+1 ki te 6-x ka whakakotahi i ngā kupu rite.
36x-5x=-x^{2}+6
Tangohia te 5x mai i ngā taha e rua.
31x=-x^{2}+6
Pahekotia te 36x me -5x, ka 31x.
31x+x^{2}=6
Me tāpiri te x^{2} ki ngā taha e rua.
x^{2}+31x=6
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+31x+\left(\frac{31}{2}\right)^{2}=6+\left(\frac{31}{2}\right)^{2}
Whakawehea te 31, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{31}{2}. Nā, tāpiria te pūrua o te \frac{31}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+31x+\frac{961}{4}=6+\frac{961}{4}
Pūruatia \frac{31}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+31x+\frac{961}{4}=\frac{985}{4}
Tāpiri 6 ki te \frac{961}{4}.
\left(x+\frac{31}{2}\right)^{2}=\frac{985}{4}
Tauwehea x^{2}+31x+\frac{961}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{31}{2}\right)^{2}}=\sqrt{\frac{985}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{31}{2}=\frac{\sqrt{985}}{2} x+\frac{31}{2}=-\frac{\sqrt{985}}{2}
Whakarūnātia.
x=\frac{\sqrt{985}-31}{2} x=\frac{-\sqrt{985}-31}{2}
Me tango \frac{31}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}