Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{6x^{3}}{12\left(x-2\right)x^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{x}{2\left(x-2\right)}
Me whakakore tahi te 6x^{2} i te taurunga me te tauraro.
\frac{x}{2x-4}
Me whakaroha te kīanga.
\frac{\left(12x^{3}-24x^{2}\right)\frac{\mathrm{d}}{\mathrm{d}x}(6x^{3})-6x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(12x^{3}-24x^{2})}{\left(12x^{3}-24x^{2}\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(12x^{3}-24x^{2}\right)\times 3\times 6x^{3-1}-6x^{3}\left(3\times 12x^{3-1}+2\left(-24\right)x^{2-1}\right)}{\left(12x^{3}-24x^{2}\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(12x^{3}-24x^{2}\right)\times 18x^{2}-6x^{3}\left(36x^{2}-48x^{1}\right)}{\left(12x^{3}-24x^{2}\right)^{2}}
Whakarūnātia.
\frac{12x^{3}\times 18x^{2}-24x^{2}\times 18x^{2}-6x^{3}\left(36x^{2}-48x^{1}\right)}{\left(12x^{3}-24x^{2}\right)^{2}}
Whakareatia 12x^{3}-24x^{2} ki te 18x^{2}.
\frac{12x^{3}\times 18x^{2}-24x^{2}\times 18x^{2}-\left(6x^{3}\times 36x^{2}+6x^{3}\left(-48\right)x^{1}\right)}{\left(12x^{3}-24x^{2}\right)^{2}}
Whakareatia 6x^{3} ki te 36x^{2}-48x^{1}.
\frac{12\times 18x^{3+2}-24\times 18x^{2+2}-\left(6\times 36x^{3+2}+6\left(-48\right)x^{3+1}\right)}{\left(12x^{3}-24x^{2}\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{216x^{5}-432x^{4}-\left(216x^{5}-288x^{4}\right)}{\left(12x^{3}-24x^{2}\right)^{2}}
Whakarūnātia.
\frac{-144x^{4}}{\left(12x^{3}-24x^{2}\right)^{2}}
Pahekotia ngā kīanga tau ōrite.