Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{6^{1}x^{2}y^{1}}{3^{1}x^{1}y^{1}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{6^{1}}{3^{1}}x^{2-1}y^{1-1}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{6^{1}}{3^{1}}x^{1}y^{1-1}
Tango 1 mai i 2.
\frac{6^{1}}{3^{1}}xy^{0}
Tango 1 mai i 1.
\frac{6^{1}}{3^{1}}x
Mō tētahi tau a mahue te 0, a^{0}=1.
2x
Whakawehe 6 ki te 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6y}{3y}x^{2-1})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1})
Mahia ngā tātaitanga.
2x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
2x^{0}
Mahia ngā tātaitanga.
2\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
2
Mō tētahi kupu t, t\times 1=t me 1t=t.