Aromātai
\frac{xy}{5x+6y}
Whakaroha
\frac{xy}{5x+6y}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(-5\times \frac{1}{y}x+6\right)\times \frac{1}{x}}{\left(-25y^{-2}x^{2}+36\right)x^{-2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{\left(-5\times \frac{1}{y}x+6\right)x^{1}}{-25y^{-2}x^{2}+36}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{-5\times \frac{1}{y}x^{2}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Me whakaroha te kīanga.
\frac{\frac{-5}{y}x^{2}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Tuhia te -5\times \frac{1}{y} hei hautanga kotahi.
\frac{\frac{-5x^{2}}{y}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Tuhia te \frac{-5}{y}x^{2} hei hautanga kotahi.
\frac{\frac{-5x^{2}}{y}+\frac{6xy}{y}}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 6x ki te \frac{y}{y}.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Tā te mea he rite te tauraro o \frac{-5x^{2}}{y} me \frac{6xy}{y}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \left(\frac{x}{y}\right)^{2}}
Tuhia te \frac{1}{y}x hei hautanga kotahi.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \frac{x^{2}}{y^{2}}}
Kia whakarewa i te \frac{x}{y} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\frac{-5x^{2}+6xy}{y}}{36+\frac{-25x^{2}}{y^{2}}}
Tuhia te -25\times \frac{x^{2}}{y^{2}} hei hautanga kotahi.
\frac{\frac{-5x^{2}+6xy}{y}}{\frac{36y^{2}}{y^{2}}+\frac{-25x^{2}}{y^{2}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 36 ki te \frac{y^{2}}{y^{2}}.
\frac{\frac{-5x^{2}+6xy}{y}}{\frac{36y^{2}-25x^{2}}{y^{2}}}
Tā te mea he rite te tauraro o \frac{36y^{2}}{y^{2}} me \frac{-25x^{2}}{y^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(-5x^{2}+6xy\right)y^{2}}{y\left(36y^{2}-25x^{2}\right)}
Whakawehe \frac{-5x^{2}+6xy}{y} ki te \frac{36y^{2}-25x^{2}}{y^{2}} mā te whakarea \frac{-5x^{2}+6xy}{y} ki te tau huripoki o \frac{36y^{2}-25x^{2}}{y^{2}}.
\frac{y\left(-5x^{2}+6xy\right)}{-25x^{2}+36y^{2}}
Me whakakore tahi te y i te taurunga me te tauraro.
\frac{xy\left(-5x+6y\right)}{\left(-5x-6y\right)\left(5x-6y\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-xy\left(5x-6y\right)}{\left(-5x-6y\right)\left(5x-6y\right)}
Unuhia te tohu tōraro i roto o -5x+6y.
\frac{-xy}{-5x-6y}
Me whakakore tahi te 5x-6y i te taurunga me te tauraro.
\frac{\left(-5\times \frac{1}{y}x+6\right)\times \frac{1}{x}}{\left(-25y^{-2}x^{2}+36\right)x^{-2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{\left(-5\times \frac{1}{y}x+6\right)x^{1}}{-25y^{-2}x^{2}+36}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{-5\times \frac{1}{y}x^{2}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Me whakaroha te kīanga.
\frac{\frac{-5}{y}x^{2}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Tuhia te -5\times \frac{1}{y} hei hautanga kotahi.
\frac{\frac{-5x^{2}}{y}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Tuhia te \frac{-5}{y}x^{2} hei hautanga kotahi.
\frac{\frac{-5x^{2}}{y}+\frac{6xy}{y}}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 6x ki te \frac{y}{y}.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Tā te mea he rite te tauraro o \frac{-5x^{2}}{y} me \frac{6xy}{y}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \left(\frac{x}{y}\right)^{2}}
Tuhia te \frac{1}{y}x hei hautanga kotahi.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \frac{x^{2}}{y^{2}}}
Kia whakarewa i te \frac{x}{y} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\frac{-5x^{2}+6xy}{y}}{36+\frac{-25x^{2}}{y^{2}}}
Tuhia te -25\times \frac{x^{2}}{y^{2}} hei hautanga kotahi.
\frac{\frac{-5x^{2}+6xy}{y}}{\frac{36y^{2}}{y^{2}}+\frac{-25x^{2}}{y^{2}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 36 ki te \frac{y^{2}}{y^{2}}.
\frac{\frac{-5x^{2}+6xy}{y}}{\frac{36y^{2}-25x^{2}}{y^{2}}}
Tā te mea he rite te tauraro o \frac{36y^{2}}{y^{2}} me \frac{-25x^{2}}{y^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(-5x^{2}+6xy\right)y^{2}}{y\left(36y^{2}-25x^{2}\right)}
Whakawehe \frac{-5x^{2}+6xy}{y} ki te \frac{36y^{2}-25x^{2}}{y^{2}} mā te whakarea \frac{-5x^{2}+6xy}{y} ki te tau huripoki o \frac{36y^{2}-25x^{2}}{y^{2}}.
\frac{y\left(-5x^{2}+6xy\right)}{-25x^{2}+36y^{2}}
Me whakakore tahi te y i te taurunga me te tauraro.
\frac{xy\left(-5x+6y\right)}{\left(-5x-6y\right)\left(5x-6y\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-xy\left(5x-6y\right)}{\left(-5x-6y\right)\left(5x-6y\right)}
Unuhia te tohu tōraro i roto o -5x+6y.
\frac{-xy}{-5x-6y}
Me whakakore tahi te 5x-6y i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}