Whakaoti mō x
x = \frac{14}{13} = 1\frac{1}{13} \approx 1.076923077
Graph
Tohaina
Kua tāruatia ki te papatopenga
8\left(6x+7\right)-168=7\left(5x-6\right)-56
Me whakarea ngā taha e rua o te whārite ki te 56, arā, te tauraro pātahi he tino iti rawa te kitea o 7,8.
48x+56-168=7\left(5x-6\right)-56
Whakamahia te āhuatanga tohatoha hei whakarea te 8 ki te 6x+7.
48x-112=7\left(5x-6\right)-56
Tangohia te 168 i te 56, ka -112.
48x-112=35x-42-56
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te 5x-6.
48x-112=35x-98
Tangohia te 56 i te -42, ka -98.
48x-112-35x=-98
Tangohia te 35x mai i ngā taha e rua.
13x-112=-98
Pahekotia te 48x me -35x, ka 13x.
13x=-98+112
Me tāpiri te 112 ki ngā taha e rua.
13x=14
Tāpirihia te -98 ki te 112, ka 14.
x=\frac{14}{13}
Whakawehea ngā taha e rua ki te 13.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}