Aromātai
\frac{1}{x-1}
Whakaroha
\frac{1}{x-1}
Graph
Pātaitai
Polynomial
\frac { 6 x + 6 } { x ^ { 2 } + 8 x - 9 } - \frac { 5 x - 3 } { x ^ { 2 } + 8 x - 9 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{6x+6-\left(5x-3\right)}{x^{2}+8x-9}
Tā te mea he rite te tauraro o \frac{6x+6}{x^{2}+8x-9} me \frac{5x-3}{x^{2}+8x-9}, me tango rāua mā te tango i ō raua taurunga.
\frac{6x+6-5x+3}{x^{2}+8x-9}
Mahia ngā whakarea i roto o 6x+6-\left(5x-3\right).
\frac{x+9}{x^{2}+8x-9}
Whakakotahitia ngā kupu rite i 6x+6-5x+3.
\frac{x+9}{\left(x-1\right)\left(x+9\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x+9}{x^{2}+8x-9}.
\frac{1}{x-1}
Me whakakore tahi te x+9 i te taurunga me te tauraro.
\frac{6x+6-\left(5x-3\right)}{x^{2}+8x-9}
Tā te mea he rite te tauraro o \frac{6x+6}{x^{2}+8x-9} me \frac{5x-3}{x^{2}+8x-9}, me tango rāua mā te tango i ō raua taurunga.
\frac{6x+6-5x+3}{x^{2}+8x-9}
Mahia ngā whakarea i roto o 6x+6-\left(5x-3\right).
\frac{x+9}{x^{2}+8x-9}
Whakakotahitia ngā kupu rite i 6x+6-5x+3.
\frac{x+9}{\left(x-1\right)\left(x+9\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x+9}{x^{2}+8x-9}.
\frac{1}{x-1}
Me whakakore tahi te x+9 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}