Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{6x+5}{\left(x-7\right)\left(x-2\right)}-\frac{6}{x-2}
Tauwehea te x^{2}-9x+14.
\frac{6x+5}{\left(x-7\right)\left(x-2\right)}-\frac{6\left(x-7\right)}{\left(x-7\right)\left(x-2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x-7\right)\left(x-2\right) me x-2 ko \left(x-7\right)\left(x-2\right). Whakareatia \frac{6}{x-2} ki te \frac{x-7}{x-7}.
\frac{6x+5-6\left(x-7\right)}{\left(x-7\right)\left(x-2\right)}
Tā te mea he rite te tauraro o \frac{6x+5}{\left(x-7\right)\left(x-2\right)} me \frac{6\left(x-7\right)}{\left(x-7\right)\left(x-2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{6x+5-6x+42}{\left(x-7\right)\left(x-2\right)}
Mahia ngā whakarea i roto o 6x+5-6\left(x-7\right).
\frac{47}{\left(x-7\right)\left(x-2\right)}
Whakakotahitia ngā kupu rite i 6x+5-6x+42.
\frac{47}{x^{2}-9x+14}
Whakarohaina te \left(x-7\right)\left(x-2\right).
\frac{6x+5}{\left(x-7\right)\left(x-2\right)}-\frac{6}{x-2}
Tauwehea te x^{2}-9x+14.
\frac{6x+5}{\left(x-7\right)\left(x-2\right)}-\frac{6\left(x-7\right)}{\left(x-7\right)\left(x-2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x-7\right)\left(x-2\right) me x-2 ko \left(x-7\right)\left(x-2\right). Whakareatia \frac{6}{x-2} ki te \frac{x-7}{x-7}.
\frac{6x+5-6\left(x-7\right)}{\left(x-7\right)\left(x-2\right)}
Tā te mea he rite te tauraro o \frac{6x+5}{\left(x-7\right)\left(x-2\right)} me \frac{6\left(x-7\right)}{\left(x-7\right)\left(x-2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{6x+5-6x+42}{\left(x-7\right)\left(x-2\right)}
Mahia ngā whakarea i roto o 6x+5-6\left(x-7\right).
\frac{47}{\left(x-7\right)\left(x-2\right)}
Whakakotahitia ngā kupu rite i 6x+5-6x+42.
\frac{47}{x^{2}-9x+14}
Whakarohaina te \left(x-7\right)\left(x-2\right).