Aromātai
-\frac{9}{29}+\frac{21}{29}i\approx -0.310344828+0.724137931i
Wāhi Tūturu
-\frac{9}{29} = -0.3103448275862069
Tohaina
Kua tāruatia ki te papatopenga
\frac{6i\left(7+3i\right)}{\left(7-3i\right)\left(7+3i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 7+3i.
\frac{6i\left(7+3i\right)}{7^{2}-3^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6i\left(7+3i\right)}{58}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{6i\times 7+6\times 3i^{2}}{58}
Whakareatia 6i ki te 7+3i.
\frac{6i\times 7+6\times 3\left(-1\right)}{58}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{-18+42i}{58}
Mahia ngā whakarea i roto o 6i\times 7+6\times 3\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
-\frac{9}{29}+\frac{21}{29}i
Whakawehea te -18+42i ki te 58, kia riro ko -\frac{9}{29}+\frac{21}{29}i.
Re(\frac{6i\left(7+3i\right)}{\left(7-3i\right)\left(7+3i\right)})
Me whakarea te taurunga me te tauraro o \frac{6i}{7-3i} ki te haumi hiato o te tauraro, 7+3i.
Re(\frac{6i\left(7+3i\right)}{7^{2}-3^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{6i\left(7+3i\right)}{58})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{6i\times 7+6\times 3i^{2}}{58})
Whakareatia 6i ki te 7+3i.
Re(\frac{6i\times 7+6\times 3\left(-1\right)}{58})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{-18+42i}{58})
Mahia ngā whakarea i roto o 6i\times 7+6\times 3\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
Re(-\frac{9}{29}+\frac{21}{29}i)
Whakawehea te -18+42i ki te 58, kia riro ko -\frac{9}{29}+\frac{21}{29}i.
-\frac{9}{29}
Ko te wāhi tūturu o -\frac{9}{29}+\frac{21}{29}i ko -\frac{9}{29}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}