Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{6i\left(7+3i\right)}{\left(7-3i\right)\left(7+3i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 7+3i.
\frac{6i\left(7+3i\right)}{7^{2}-3^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6i\left(7+3i\right)}{58}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{6i\times 7+6\times 3i^{2}}{58}
Whakareatia 6i ki te 7+3i.
\frac{6i\times 7+6\times 3\left(-1\right)}{58}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{-18+42i}{58}
Mahia ngā whakarea i roto o 6i\times 7+6\times 3\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
-\frac{9}{29}+\frac{21}{29}i
Whakawehea te -18+42i ki te 58, kia riro ko -\frac{9}{29}+\frac{21}{29}i.
Re(\frac{6i\left(7+3i\right)}{\left(7-3i\right)\left(7+3i\right)})
Me whakarea te taurunga me te tauraro o \frac{6i}{7-3i} ki te haumi hiato o te tauraro, 7+3i.
Re(\frac{6i\left(7+3i\right)}{7^{2}-3^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{6i\left(7+3i\right)}{58})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{6i\times 7+6\times 3i^{2}}{58})
Whakareatia 6i ki te 7+3i.
Re(\frac{6i\times 7+6\times 3\left(-1\right)}{58})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{-18+42i}{58})
Mahia ngā whakarea i roto o 6i\times 7+6\times 3\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
Re(-\frac{9}{29}+\frac{21}{29}i)
Whakawehea te -18+42i ki te 58, kia riro ko -\frac{9}{29}+\frac{21}{29}i.
-\frac{9}{29}
Ko te wāhi tūturu o -\frac{9}{29}+\frac{21}{29}i ko -\frac{9}{29}.