Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{6a}{a-5}-\frac{3}{6\left(a-1\right)}
Tauwehea te 6a-6.
\frac{6a\times 6\left(a-1\right)}{6\left(a-5\right)\left(a-1\right)}-\frac{3\left(a-5\right)}{6\left(a-5\right)\left(a-1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a-5 me 6\left(a-1\right) ko 6\left(a-5\right)\left(a-1\right). Whakareatia \frac{6a}{a-5} ki te \frac{6\left(a-1\right)}{6\left(a-1\right)}. Whakareatia \frac{3}{6\left(a-1\right)} ki te \frac{a-5}{a-5}.
\frac{6a\times 6\left(a-1\right)-3\left(a-5\right)}{6\left(a-5\right)\left(a-1\right)}
Tā te mea he rite te tauraro o \frac{6a\times 6\left(a-1\right)}{6\left(a-5\right)\left(a-1\right)} me \frac{3\left(a-5\right)}{6\left(a-5\right)\left(a-1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{36a^{2}-36a-3a+15}{6\left(a-5\right)\left(a-1\right)}
Mahia ngā whakarea i roto o 6a\times 6\left(a-1\right)-3\left(a-5\right).
\frac{36a^{2}-39a+15}{6\left(a-5\right)\left(a-1\right)}
Whakakotahitia ngā kupu rite i 36a^{2}-36a-3a+15.
\frac{3\left(12a^{2}-13a+5\right)}{6\left(a-5\right)\left(a-1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{36a^{2}-39a+15}{6\left(a-5\right)\left(a-1\right)}.
\frac{12a^{2}-13a+5}{2\left(a-5\right)\left(a-1\right)}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{12a^{2}-13a+5}{2a^{2}-12a+10}
Whakarohaina te 2\left(a-5\right)\left(a-1\right).