Aromātai
\frac{12a^{2}-13a+5}{2\left(a-5\right)\left(a-1\right)}
Tauwehe
\frac{12a^{2}-13a+5}{2\left(a-5\right)\left(a-1\right)}
Tohaina
Kua tāruatia ki te papatopenga
\frac{6a}{a-5}-\frac{3}{6\left(a-1\right)}
Tauwehea te 6a-6.
\frac{6a\times 6\left(a-1\right)}{6\left(a-5\right)\left(a-1\right)}-\frac{3\left(a-5\right)}{6\left(a-5\right)\left(a-1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a-5 me 6\left(a-1\right) ko 6\left(a-5\right)\left(a-1\right). Whakareatia \frac{6a}{a-5} ki te \frac{6\left(a-1\right)}{6\left(a-1\right)}. Whakareatia \frac{3}{6\left(a-1\right)} ki te \frac{a-5}{a-5}.
\frac{6a\times 6\left(a-1\right)-3\left(a-5\right)}{6\left(a-5\right)\left(a-1\right)}
Tā te mea he rite te tauraro o \frac{6a\times 6\left(a-1\right)}{6\left(a-5\right)\left(a-1\right)} me \frac{3\left(a-5\right)}{6\left(a-5\right)\left(a-1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{36a^{2}-36a-3a+15}{6\left(a-5\right)\left(a-1\right)}
Mahia ngā whakarea i roto o 6a\times 6\left(a-1\right)-3\left(a-5\right).
\frac{36a^{2}-39a+15}{6\left(a-5\right)\left(a-1\right)}
Whakakotahitia ngā kupu rite i 36a^{2}-36a-3a+15.
\frac{3\left(12a^{2}-13a+5\right)}{6\left(a-5\right)\left(a-1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{36a^{2}-39a+15}{6\left(a-5\right)\left(a-1\right)}.
\frac{12a^{2}-13a+5}{2\left(a-5\right)\left(a-1\right)}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{12a^{2}-13a+5}{2a^{2}-12a+10}
Whakarohaina te 2\left(a-5\right)\left(a-1\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}