Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{6\left(n-4\right)-30}{n-24\left(n-5\right)\left(n-4\right)}
Whakareatia te 4 ki te 6, ka 24.
\frac{6\left(n-9\right)}{-24\left(n-\left(-\frac{1}{48}\sqrt{1009}+\frac{217}{48}\right)\right)\left(n-\left(\frac{1}{48}\sqrt{1009}+\frac{217}{48}\right)\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{n-9}{-4\left(n-\left(-\frac{1}{48}\sqrt{1009}+\frac{217}{48}\right)\right)\left(n-\left(\frac{1}{48}\sqrt{1009}+\frac{217}{48}\right)\right)}
Me whakakore tahi te 6 i te taurunga me te tauraro.
\frac{n-9}{-4n^{2}+\frac{217}{6}n-80}
Me whakaroha te kīanga.
\frac{6\left(n-4\right)-30}{n-24\left(n-5\right)\left(n-4\right)}
Whakareatia te 4 ki te 6, ka 24.
\frac{6\left(n-9\right)}{-24\left(n-\left(-\frac{1}{48}\sqrt{1009}+\frac{217}{48}\right)\right)\left(n-\left(\frac{1}{48}\sqrt{1009}+\frac{217}{48}\right)\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{n-9}{-4\left(n-\left(-\frac{1}{48}\sqrt{1009}+\frac{217}{48}\right)\right)\left(n-\left(\frac{1}{48}\sqrt{1009}+\frac{217}{48}\right)\right)}
Me whakakore tahi te 6 i te taurunga me te tauraro.
\frac{n-9}{-4n^{2}+\frac{217}{6}n-80}
Me whakaroha te kīanga.