Tīpoka ki ngā ihirangi matua
Whakaoti mō k
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4\left(6\left(k^{2}+1\right)^{2}-\left(3k^{2}-1\right)^{2}\right)=5\left(3k^{2}+1\right)^{2}
Me whakarea ngā taha e rua o te whārite ki te 4\left(3k^{2}+1\right)^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o \left(3k^{2}+1\right)^{2},4.
4\left(6\left(\left(k^{2}\right)^{2}+2k^{2}+1\right)-\left(3k^{2}-1\right)^{2}\right)=5\left(3k^{2}+1\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(k^{2}+1\right)^{2}.
4\left(6\left(k^{4}+2k^{2}+1\right)-\left(3k^{2}-1\right)^{2}\right)=5\left(3k^{2}+1\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
4\left(6k^{4}+12k^{2}+6-\left(3k^{2}-1\right)^{2}\right)=5\left(3k^{2}+1\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te k^{4}+2k^{2}+1.
4\left(6k^{4}+12k^{2}+6-\left(9\left(k^{2}\right)^{2}-6k^{2}+1\right)\right)=5\left(3k^{2}+1\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3k^{2}-1\right)^{2}.
4\left(6k^{4}+12k^{2}+6-\left(9k^{4}-6k^{2}+1\right)\right)=5\left(3k^{2}+1\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
4\left(6k^{4}+12k^{2}+6-9k^{4}+6k^{2}-1\right)=5\left(3k^{2}+1\right)^{2}
Hei kimi i te tauaro o 9k^{4}-6k^{2}+1, kimihia te tauaro o ia taurangi.
4\left(-3k^{4}+12k^{2}+6+6k^{2}-1\right)=5\left(3k^{2}+1\right)^{2}
Pahekotia te 6k^{4} me -9k^{4}, ka -3k^{4}.
4\left(-3k^{4}+18k^{2}+6-1\right)=5\left(3k^{2}+1\right)^{2}
Pahekotia te 12k^{2} me 6k^{2}, ka 18k^{2}.
4\left(-3k^{4}+18k^{2}+5\right)=5\left(3k^{2}+1\right)^{2}
Tangohia te 1 i te 6, ka 5.
-12k^{4}+72k^{2}+20=5\left(3k^{2}+1\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te -3k^{4}+18k^{2}+5.
-12k^{4}+72k^{2}+20=5\left(9\left(k^{2}\right)^{2}+6k^{2}+1\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3k^{2}+1\right)^{2}.
-12k^{4}+72k^{2}+20=5\left(9k^{4}+6k^{2}+1\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
-12k^{4}+72k^{2}+20=45k^{4}+30k^{2}+5
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 9k^{4}+6k^{2}+1.
-12k^{4}+72k^{2}+20-45k^{4}=30k^{2}+5
Tangohia te 45k^{4} mai i ngā taha e rua.
-57k^{4}+72k^{2}+20=30k^{2}+5
Pahekotia te -12k^{4} me -45k^{4}, ka -57k^{4}.
-57k^{4}+72k^{2}+20-30k^{2}=5
Tangohia te 30k^{2} mai i ngā taha e rua.
-57k^{4}+42k^{2}+20=5
Pahekotia te 72k^{2} me -30k^{2}, ka 42k^{2}.
-57k^{4}+42k^{2}+20-5=0
Tangohia te 5 mai i ngā taha e rua.
-57k^{4}+42k^{2}+15=0
Tangohia te 5 i te 20, ka 15.
-57t^{2}+42t+15=0
Whakakapia te t mō te k^{2}.
t=\frac{-42±\sqrt{42^{2}-4\left(-57\right)\times 15}}{-57\times 2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te -57 mō te a, te 42 mō te b, me te 15 mō te c i te ture pūrua.
t=\frac{-42±72}{-114}
Mahia ngā tātaitai.
t=-\frac{5}{19} t=1
Whakaotia te whārite t=\frac{-42±72}{-114} ina he tōrunga te ±, ina he tōraro te ±.
k=1 k=-1
I te mea ko k=t^{2}, ka riro ngā otinga mā te arotake i te k=±\sqrt{t} mō t tōrunga.