Whakaoti mō x
x = \frac{22}{3} = 7\frac{1}{3} \approx 7.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-11\right)\times 6=-x\times 3
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,11 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-11\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,11-x.
6x-66=-x\times 3
Whakamahia te āhuatanga tohatoha hei whakarea te x-11 ki te 6.
6x-66=-3x
Whakareatia te -1 ki te 3, ka -3.
6x-66+3x=0
Me tāpiri te 3x ki ngā taha e rua.
9x-66=0
Pahekotia te 6x me 3x, ka 9x.
9x=66
Me tāpiri te 66 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=\frac{66}{9}
Whakawehea ngā taha e rua ki te 9.
x=\frac{22}{3}
Whakahekea te hautanga \frac{66}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}