Whakaoti mō x (complex solution)
x=\sqrt{6}-2\approx 0.449489743
x=-\left(\sqrt{6}+2\right)\approx -4.449489743
Whakaoti mō x
x=\sqrt{6}-2\approx 0.449489743
x=-\sqrt{6}-2\approx -4.449489743
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
\frac { 6 } { x ^ { 2 } } - \frac { 12 } { x } = 3
Tohaina
Kua tāruatia ki te papatopenga
6-x\times 12=3x^{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o x^{2},x.
6-x\times 12-3x^{2}=0
Tangohia te 3x^{2} mai i ngā taha e rua.
6-12x-3x^{2}=0
Whakareatia te -1 ki te 12, ka -12.
-3x^{2}-12x+6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-3\right)\times 6}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, -12 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-3\right)\times 6}}{2\left(-3\right)}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144+12\times 6}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-\left(-12\right)±\sqrt{144+72}}{2\left(-3\right)}
Whakareatia 12 ki te 6.
x=\frac{-\left(-12\right)±\sqrt{216}}{2\left(-3\right)}
Tāpiri 144 ki te 72.
x=\frac{-\left(-12\right)±6\sqrt{6}}{2\left(-3\right)}
Tuhia te pūtakerua o te 216.
x=\frac{12±6\sqrt{6}}{2\left(-3\right)}
Ko te tauaro o -12 ko 12.
x=\frac{12±6\sqrt{6}}{-6}
Whakareatia 2 ki te -3.
x=\frac{6\sqrt{6}+12}{-6}
Nā, me whakaoti te whārite x=\frac{12±6\sqrt{6}}{-6} ina he tāpiri te ±. Tāpiri 12 ki te 6\sqrt{6}.
x=-\left(\sqrt{6}+2\right)
Whakawehe 12+6\sqrt{6} ki te -6.
x=\frac{12-6\sqrt{6}}{-6}
Nā, me whakaoti te whārite x=\frac{12±6\sqrt{6}}{-6} ina he tango te ±. Tango 6\sqrt{6} mai i 12.
x=\sqrt{6}-2
Whakawehe 12-6\sqrt{6} ki te -6.
x=-\left(\sqrt{6}+2\right) x=\sqrt{6}-2
Kua oti te whārite te whakatau.
6-x\times 12=3x^{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o x^{2},x.
6-x\times 12-3x^{2}=0
Tangohia te 3x^{2} mai i ngā taha e rua.
-x\times 12-3x^{2}=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-12x-3x^{2}=-6
Whakareatia te -1 ki te 12, ka -12.
-3x^{2}-12x=-6
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-3x^{2}-12x}{-3}=-\frac{6}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\left(-\frac{12}{-3}\right)x=-\frac{6}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}+4x=-\frac{6}{-3}
Whakawehe -12 ki te -3.
x^{2}+4x=2
Whakawehe -6 ki te -3.
x^{2}+4x+2^{2}=2+2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+4x+4=2+4
Pūrua 2.
x^{2}+4x+4=6
Tāpiri 2 ki te 4.
\left(x+2\right)^{2}=6
Tauwehea x^{2}+4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{6}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+2=\sqrt{6} x+2=-\sqrt{6}
Whakarūnātia.
x=\sqrt{6}-2 x=-\sqrt{6}-2
Me tango 2 mai i ngā taha e rua o te whārite.
6-x\times 12=3x^{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o x^{2},x.
6-x\times 12-3x^{2}=0
Tangohia te 3x^{2} mai i ngā taha e rua.
6-12x-3x^{2}=0
Whakareatia te -1 ki te 12, ka -12.
-3x^{2}-12x+6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-3\right)\times 6}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, -12 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-3\right)\times 6}}{2\left(-3\right)}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144+12\times 6}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-\left(-12\right)±\sqrt{144+72}}{2\left(-3\right)}
Whakareatia 12 ki te 6.
x=\frac{-\left(-12\right)±\sqrt{216}}{2\left(-3\right)}
Tāpiri 144 ki te 72.
x=\frac{-\left(-12\right)±6\sqrt{6}}{2\left(-3\right)}
Tuhia te pūtakerua o te 216.
x=\frac{12±6\sqrt{6}}{2\left(-3\right)}
Ko te tauaro o -12 ko 12.
x=\frac{12±6\sqrt{6}}{-6}
Whakareatia 2 ki te -3.
x=\frac{6\sqrt{6}+12}{-6}
Nā, me whakaoti te whārite x=\frac{12±6\sqrt{6}}{-6} ina he tāpiri te ±. Tāpiri 12 ki te 6\sqrt{6}.
x=-\left(\sqrt{6}+2\right)
Whakawehe 12+6\sqrt{6} ki te -6.
x=\frac{12-6\sqrt{6}}{-6}
Nā, me whakaoti te whārite x=\frac{12±6\sqrt{6}}{-6} ina he tango te ±. Tango 6\sqrt{6} mai i 12.
x=\sqrt{6}-2
Whakawehe 12-6\sqrt{6} ki te -6.
x=-\left(\sqrt{6}+2\right) x=\sqrt{6}-2
Kua oti te whārite te whakatau.
6-x\times 12=3x^{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o x^{2},x.
6-x\times 12-3x^{2}=0
Tangohia te 3x^{2} mai i ngā taha e rua.
-x\times 12-3x^{2}=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-12x-3x^{2}=-6
Whakareatia te -1 ki te 12, ka -12.
-3x^{2}-12x=-6
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-3x^{2}-12x}{-3}=-\frac{6}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\left(-\frac{12}{-3}\right)x=-\frac{6}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}+4x=-\frac{6}{-3}
Whakawehe -12 ki te -3.
x^{2}+4x=2
Whakawehe -6 ki te -3.
x^{2}+4x+2^{2}=2+2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+4x+4=2+4
Pūrua 2.
x^{2}+4x+4=6
Tāpiri 2 ki te 4.
\left(x+2\right)^{2}=6
Tauwehea x^{2}+4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{6}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+2=\sqrt{6} x+2=-\sqrt{6}
Whakarūnātia.
x=\sqrt{6}-2 x=-\sqrt{6}-2
Me tango 2 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}