Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{6}{x\left(x+2\right)}-\frac{3}{x}+\frac{3}{x+2}
Tauwehea te x^{2}+2x.
\frac{6}{x\left(x+2\right)}-\frac{3\left(x+2\right)}{x\left(x+2\right)}+\frac{3}{x+2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x\left(x+2\right) me x ko x\left(x+2\right). Whakareatia \frac{3}{x} ki te \frac{x+2}{x+2}.
\frac{6-3\left(x+2\right)}{x\left(x+2\right)}+\frac{3}{x+2}
Tā te mea he rite te tauraro o \frac{6}{x\left(x+2\right)} me \frac{3\left(x+2\right)}{x\left(x+2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{6-3x-6}{x\left(x+2\right)}+\frac{3}{x+2}
Mahia ngā whakarea i roto o 6-3\left(x+2\right).
\frac{-3x}{x\left(x+2\right)}+\frac{3}{x+2}
Whakakotahitia ngā kupu rite i 6-3x-6.
\frac{-3}{x+2}+\frac{3}{x+2}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{0}{x+2}
Tā te mea he rite te tauraro o \frac{-3}{x+2} me \frac{3}{x+2}, me tāpiri rāua mā te tāpiri i ō raua taurunga. Tāpirihia te -3 ki te 3, ka 0.
0
Ina whakawehea te kore ki te tau ehara i te kore ka kore tonu.