Whakaoti mō x
x=9
Graph
Tohaina
Kua tāruatia ki te papatopenga
22\times 6=\left(x+2\right)\times 12
Tē taea kia ōrite te tāupe x ki -2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 22\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+2,22.
132=\left(x+2\right)\times 12
Whakareatia te 22 ki te 6, ka 132.
132=12x+24
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 12.
12x+24=132
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
12x=132-24
Tangohia te 24 mai i ngā taha e rua.
12x=108
Tangohia te 24 i te 132, ka 108.
x=\frac{108}{12}
Whakawehea ngā taha e rua ki te 12.
x=9
Whakawehea te 108 ki te 12, kia riro ko 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}