Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{6}{\left(a-3\right)\left(a+3\right)}+\frac{1}{a+3}
Tauwehea te a^{2}-9.
\frac{6}{\left(a-3\right)\left(a+3\right)}+\frac{a-3}{\left(a-3\right)\left(a+3\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(a-3\right)\left(a+3\right) me a+3 ko \left(a-3\right)\left(a+3\right). Whakareatia \frac{1}{a+3} ki te \frac{a-3}{a-3}.
\frac{6+a-3}{\left(a-3\right)\left(a+3\right)}
Tā te mea he rite te tauraro o \frac{6}{\left(a-3\right)\left(a+3\right)} me \frac{a-3}{\left(a-3\right)\left(a+3\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3+a}{\left(a-3\right)\left(a+3\right)}
Whakakotahitia ngā kupu rite i 6+a-3.
\frac{1}{a-3}
Me whakakore tahi te a+3 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{6}{\left(a-3\right)\left(a+3\right)}+\frac{1}{a+3})
Tauwehea te a^{2}-9.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{6}{\left(a-3\right)\left(a+3\right)}+\frac{a-3}{\left(a-3\right)\left(a+3\right)})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(a-3\right)\left(a+3\right) me a+3 ko \left(a-3\right)\left(a+3\right). Whakareatia \frac{1}{a+3} ki te \frac{a-3}{a-3}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{6+a-3}{\left(a-3\right)\left(a+3\right)})
Tā te mea he rite te tauraro o \frac{6}{\left(a-3\right)\left(a+3\right)} me \frac{a-3}{\left(a-3\right)\left(a+3\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{3+a}{\left(a-3\right)\left(a+3\right)})
Whakakotahitia ngā kupu rite i 6+a-3.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a-3})
Me whakakore tahi te a+3 i te taurunga me te tauraro.
-\left(a^{1}-3\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}a}(a^{1}-3)
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(a^{1}-3\right)^{-2}a^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-a^{0}\left(a^{1}-3\right)^{-2}
Whakarūnātia.
-a^{0}\left(a-3\right)^{-2}
Mō tētahi kupu t, t^{1}=t.
-\left(a-3\right)^{-2}
Mō tētahi kupu t mahue te 0, t^{0}=1.