Whakaoti mō Q
Q=-\frac{19-2R}{16\left(8-R\right)}
R\neq 8
Whakaoti mō R
R=\frac{128Q+19}{2\left(8Q+1\right)}
Q\neq -\frac{1}{8}
Tohaina
Kua tāruatia ki te papatopenga
6=4\left(8Q+1\right)\left(R-8\right)
Whakareatia ngā taha e rua o te whārite ki te R-8.
6=\left(32Q+4\right)\left(R-8\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 8Q+1.
6=32QR-256Q+4R-32
Whakamahia te āhuatanga tohatoha hei whakarea te 32Q+4 ki te R-8.
32QR-256Q+4R-32=6
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
32QR-256Q-32=6-4R
Tangohia te 4R mai i ngā taha e rua.
32QR-256Q=6-4R+32
Me tāpiri te 32 ki ngā taha e rua.
32QR-256Q=38-4R
Tāpirihia te 6 ki te 32, ka 38.
\left(32R-256\right)Q=38-4R
Pahekotia ngā kīanga tau katoa e whai ana i te Q.
\frac{\left(32R-256\right)Q}{32R-256}=\frac{38-4R}{32R-256}
Whakawehea ngā taha e rua ki te 32R-256.
Q=\frac{38-4R}{32R-256}
Mā te whakawehe ki te 32R-256 ka wetekia te whakareanga ki te 32R-256.
Q=\frac{19-2R}{16\left(R-8\right)}
Whakawehe 38-4R ki te 32R-256.
6=4\left(8Q+1\right)\left(R-8\right)
Tē taea kia ōrite te tāupe R ki 8 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te R-8.
6=\left(32Q+4\right)\left(R-8\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 8Q+1.
6=32QR-256Q+4R-32
Whakamahia te āhuatanga tohatoha hei whakarea te 32Q+4 ki te R-8.
32QR-256Q+4R-32=6
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
32QR+4R-32=6+256Q
Me tāpiri te 256Q ki ngā taha e rua.
32QR+4R=6+256Q+32
Me tāpiri te 32 ki ngā taha e rua.
32QR+4R=38+256Q
Tāpirihia te 6 ki te 32, ka 38.
\left(32Q+4\right)R=38+256Q
Pahekotia ngā kīanga tau katoa e whai ana i te R.
\left(32Q+4\right)R=256Q+38
He hanga arowhānui tō te whārite.
\frac{\left(32Q+4\right)R}{32Q+4}=\frac{256Q+38}{32Q+4}
Whakawehea ngā taha e rua ki te 32Q+4.
R=\frac{256Q+38}{32Q+4}
Mā te whakawehe ki te 32Q+4 ka wetekia te whakareanga ki te 32Q+4.
R=\frac{128Q+19}{2\left(8Q+1\right)}
Whakawehe 38+256Q ki te 32Q+4.
R=\frac{128Q+19}{2\left(8Q+1\right)}\text{, }R\neq 8
Tē taea kia ōrite te tāupe R ki 8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}