Aromātai
\frac{91}{18}\approx 5.055555556
Tauwehe
\frac{7 \cdot 13}{2 \cdot 3 ^ {2}} = 5\frac{1}{18} = 5.055555555555555
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}+\frac{4^{2}}{18}-\frac{3}{6}+\frac{12}{3}
Whakahekea te hautanga \frac{6}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{2}{3}+\frac{16}{18}-\frac{3}{6}+\frac{12}{3}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\frac{2}{3}+\frac{8}{9}-\frac{3}{6}+\frac{12}{3}
Whakahekea te hautanga \frac{16}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{6}{9}+\frac{8}{9}-\frac{3}{6}+\frac{12}{3}
Ko te maha noa iti rawa atu o 3 me 9 ko 9. Me tahuri \frac{2}{3} me \frac{8}{9} ki te hautau me te tautūnga 9.
\frac{6+8}{9}-\frac{3}{6}+\frac{12}{3}
Tā te mea he rite te tauraro o \frac{6}{9} me \frac{8}{9}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{14}{9}-\frac{3}{6}+\frac{12}{3}
Tāpirihia te 6 ki te 8, ka 14.
\frac{14}{9}-\frac{1}{2}+\frac{12}{3}
Whakahekea te hautanga \frac{3}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{28}{18}-\frac{9}{18}+\frac{12}{3}
Ko te maha noa iti rawa atu o 9 me 2 ko 18. Me tahuri \frac{14}{9} me \frac{1}{2} ki te hautau me te tautūnga 18.
\frac{28-9}{18}+\frac{12}{3}
Tā te mea he rite te tauraro o \frac{28}{18} me \frac{9}{18}, me tango rāua mā te tango i ō raua taurunga.
\frac{19}{18}+\frac{12}{3}
Tangohia te 9 i te 28, ka 19.
\frac{19}{18}+4
Whakawehea te 12 ki te 3, kia riro ko 4.
\frac{19}{18}+\frac{72}{18}
Me tahuri te 4 ki te hautau \frac{72}{18}.
\frac{19+72}{18}
Tā te mea he rite te tauraro o \frac{19}{18} me \frac{72}{18}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{91}{18}
Tāpirihia te 19 ki te 72, ka 91.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}