Aromātai
1
Tauwehe
1
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 6 } { 7 } : \frac { 3 } { 5 } - \frac { 3 } { 7 } =
Tohaina
Kua tāruatia ki te papatopenga
\frac{6}{7}\times \frac{5}{3}-\frac{3}{7}
Whakawehe \frac{6}{7} ki te \frac{3}{5} mā te whakarea \frac{6}{7} ki te tau huripoki o \frac{3}{5}.
\frac{6\times 5}{7\times 3}-\frac{3}{7}
Me whakarea te \frac{6}{7} ki te \frac{5}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{30}{21}-\frac{3}{7}
Mahia ngā whakarea i roto i te hautanga \frac{6\times 5}{7\times 3}.
\frac{10}{7}-\frac{3}{7}
Whakahekea te hautanga \frac{30}{21} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{10-3}{7}
Tā te mea he rite te tauraro o \frac{10}{7} me \frac{3}{7}, me tango rāua mā te tango i ō raua taurunga.
\frac{7}{7}
Tangohia te 3 i te 10, ka 7.
1
Whakawehea te 7 ki te 7, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}