Whakaoti mō x
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
6+\left(2x+3\right)\times 4x=2\left(2x+3\right)^{2}
Tē taea kia ōrite te tāupe x ki -\frac{3}{2} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(2x+3\right)^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o 4x^{2}+12x+9,2x+3.
6+\left(8x+12\right)x=2\left(2x+3\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+3 ki te 4.
6+8x^{2}+12x=2\left(2x+3\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 8x+12 ki te x.
6+8x^{2}+12x=2\left(4x^{2}+12x+9\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+3\right)^{2}.
6+8x^{2}+12x=8x^{2}+24x+18
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 4x^{2}+12x+9.
6+8x^{2}+12x-8x^{2}=24x+18
Tangohia te 8x^{2} mai i ngā taha e rua.
6+12x=24x+18
Pahekotia te 8x^{2} me -8x^{2}, ka 0.
6+12x-24x=18
Tangohia te 24x mai i ngā taha e rua.
6-12x=18
Pahekotia te 12x me -24x, ka -12x.
-12x=18-6
Tangohia te 6 mai i ngā taha e rua.
-12x=12
Tangohia te 6 i te 18, ka 12.
x=\frac{12}{-12}
Whakawehea ngā taha e rua ki te -12.
x=-1
Whakawehea te 12 ki te -12, kia riro ko -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}