Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5\times 6=\left(x+2\right)\left(x-5\right)
Tē taea kia ōrite te tāupe x ki -2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 10\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x+4,10.
30=\left(x+2\right)\left(x-5\right)
Whakareatia te 5 ki te 6, ka 30.
30=x^{2}-3x-10
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x-5 ka whakakotahi i ngā kupu rite.
x^{2}-3x-10=30
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-3x-10-30=0
Tangohia te 30 mai i ngā taha e rua.
x^{2}-3x-40=0
Tangohia te 30 i te -10, ka -40.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-40\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -3 mō b, me -40 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-40\right)}}{2}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9+160}}{2}
Whakareatia -4 ki te -40.
x=\frac{-\left(-3\right)±\sqrt{169}}{2}
Tāpiri 9 ki te 160.
x=\frac{-\left(-3\right)±13}{2}
Tuhia te pūtakerua o te 169.
x=\frac{3±13}{2}
Ko te tauaro o -3 ko 3.
x=\frac{16}{2}
Nā, me whakaoti te whārite x=\frac{3±13}{2} ina he tāpiri te ±. Tāpiri 3 ki te 13.
x=8
Whakawehe 16 ki te 2.
x=-\frac{10}{2}
Nā, me whakaoti te whārite x=\frac{3±13}{2} ina he tango te ±. Tango 13 mai i 3.
x=-5
Whakawehe -10 ki te 2.
x=8 x=-5
Kua oti te whārite te whakatau.
5\times 6=\left(x+2\right)\left(x-5\right)
Tē taea kia ōrite te tāupe x ki -2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 10\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x+4,10.
30=\left(x+2\right)\left(x-5\right)
Whakareatia te 5 ki te 6, ka 30.
30=x^{2}-3x-10
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x-5 ka whakakotahi i ngā kupu rite.
x^{2}-3x-10=30
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-3x=30+10
Me tāpiri te 10 ki ngā taha e rua.
x^{2}-3x=40
Tāpirihia te 30 ki te 10, ka 40.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=40+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=40+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=\frac{169}{4}
Tāpiri 40 ki te \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{169}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{13}{2} x-\frac{3}{2}=-\frac{13}{2}
Whakarūnātia.
x=8 x=-5
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.