Whakaoti mō x
x = \frac{216}{7} = 30\frac{6}{7} \approx 30.857142857
Graph
Tohaina
Kua tāruatia ki te papatopenga
12\left(x-1\right)=19\left(x-12\right)
Tē taea kia ōrite te tāupe x ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 38\left(x-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 19,2x-2.
12x-12=19\left(x-12\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 12 ki te x-1.
12x-12=19x-228
Whakamahia te āhuatanga tohatoha hei whakarea te 19 ki te x-12.
12x-12-19x=-228
Tangohia te 19x mai i ngā taha e rua.
-7x-12=-228
Pahekotia te 12x me -19x, ka -7x.
-7x=-228+12
Me tāpiri te 12 ki ngā taha e rua.
-7x=-216
Tāpirihia te -228 ki te 12, ka -216.
x=\frac{-216}{-7}
Whakawehea ngā taha e rua ki te -7.
x=\frac{216}{7}
Ka taea te hautanga \frac{-216}{-7} te whakamāmā ki te \frac{216}{7} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}