Aromātai
\frac{8-3x-2x^{2}}{x^{2}-4}
Tauwehe
-\frac{2\left(x-\frac{-\sqrt{73}-3}{4}\right)\left(x-\frac{\sqrt{73}-3}{4}\right)}{x^{2}-4}
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { 6 } { 1 - 4 } - \frac { 3 x } { x ^ { 2 } - 4 } =
Tohaina
Kua tāruatia ki te papatopenga
\frac{6}{-3}-\frac{3x}{x^{2}-4}
Tangohia te 4 i te 1, ka -3.
-2-\frac{3x}{x^{2}-4}
Whakawehea te 6 ki te -3, kia riro ko -2.
-2-\frac{3x}{\left(x-2\right)\left(x+2\right)}
Tauwehea te x^{2}-4.
-\frac{2\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{3x}{\left(x-2\right)\left(x+2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -2 ki te \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.
\frac{-2\left(x-2\right)\left(x+2\right)-3x}{\left(x-2\right)\left(x+2\right)}
Tā te mea he rite te tauraro o -\frac{2\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} me \frac{3x}{\left(x-2\right)\left(x+2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{-2x^{2}-4x+4x+8-3x}{\left(x-2\right)\left(x+2\right)}
Mahia ngā whakarea i roto o -2\left(x-2\right)\left(x+2\right)-3x.
\frac{-2x^{2}-3x+8}{\left(x-2\right)\left(x+2\right)}
Whakakotahitia ngā kupu rite i -2x^{2}-4x+4x+8-3x.
\frac{-2x^{2}-3x+8}{x^{2}-4}
Whakarohaina te \left(x-2\right)\left(x+2\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}