Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{6\sqrt{7}}{\left(\sqrt{7}\right)^{2}}+\frac{8}{\sqrt{2}}
Whakangāwaritia te tauraro o \frac{6}{\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}.
\frac{6\sqrt{7}}{7}+\frac{8}{\sqrt{2}}
Ko te pūrua o \sqrt{7} ko 7.
\frac{6\sqrt{7}}{7}+\frac{8\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{8}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{6\sqrt{7}}{7}+\frac{8\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{6\sqrt{7}}{7}+4\sqrt{2}
Whakawehea te 8\sqrt{2} ki te 2, kia riro ko 4\sqrt{2}.
\frac{6\sqrt{7}}{7}+\frac{7\times 4\sqrt{2}}{7}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 4\sqrt{2} ki te \frac{7}{7}.
\frac{6\sqrt{7}+7\times 4\sqrt{2}}{7}
Tā te mea he rite te tauraro o \frac{6\sqrt{7}}{7} me \frac{7\times 4\sqrt{2}}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{6\sqrt{7}+28\sqrt{2}}{7}
Mahia ngā whakarea i roto o 6\sqrt{7}+7\times 4\sqrt{2}.