Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{6\times 2\sqrt{6}+\sqrt{54}}{\sqrt{50}}
Tauwehea te 24=2^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 6} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{6}. Tuhia te pūtakerua o te 2^{2}.
\frac{12\sqrt{6}+\sqrt{54}}{\sqrt{50}}
Whakareatia te 6 ki te 2, ka 12.
\frac{12\sqrt{6}+3\sqrt{6}}{\sqrt{50}}
Tauwehea te 54=3^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 6} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{6}. Tuhia te pūtakerua o te 3^{2}.
\frac{15\sqrt{6}}{\sqrt{50}}
Pahekotia te 12\sqrt{6} me 3\sqrt{6}, ka 15\sqrt{6}.
\frac{15\sqrt{6}}{5\sqrt{2}}
Tauwehea te 50=5^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 2} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{2}. Tuhia te pūtakerua o te 5^{2}.
\frac{3\sqrt{6}}{\sqrt{2}}
Me whakakore tahi te 5 i te taurunga me te tauraro.
\frac{3\sqrt{6}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{3\sqrt{6}}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{3\sqrt{6}\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{3\sqrt{2}\sqrt{3}\sqrt{2}}{2}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
\frac{3\times 2\sqrt{3}}{2}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
3\sqrt{3}
Me whakakore te 2 me te 2.