Aromātai
\frac{31\sqrt{835}}{62625}\approx 0.01430399
Tohaina
Kua tāruatia ki te papatopenga
\frac{6\times 62\times 6\times 10^{-24}}{\sqrt{2\times 167\times 10^{-43}\times 81\times 9}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -27 me te -16 kia riro ai te -43.
\frac{372\times 6\times 10^{-24}}{\sqrt{2\times 167\times 10^{-43}\times 81\times 9}}
Whakareatia te 6 ki te 62, ka 372.
\frac{2232\times 10^{-24}}{\sqrt{2\times 167\times 10^{-43}\times 81\times 9}}
Whakareatia te 372 ki te 6, ka 2232.
\frac{2232\times \frac{1}{1000000000000000000000000}}{\sqrt{2\times 167\times 10^{-43}\times 81\times 9}}
Tātaihia te 10 mā te pū o -24, kia riro ko \frac{1}{1000000000000000000000000}.
\frac{\frac{279}{125000000000000000000000}}{\sqrt{2\times 167\times 10^{-43}\times 81\times 9}}
Whakareatia te 2232 ki te \frac{1}{1000000000000000000000000}, ka \frac{279}{125000000000000000000000}.
\frac{\frac{279}{125000000000000000000000}}{\sqrt{334\times 10^{-43}\times 81\times 9}}
Whakareatia te 2 ki te 167, ka 334.
\frac{\frac{279}{125000000000000000000000}}{\sqrt{334\times \frac{1}{10000000000000000000000000000000000000000000}\times 81\times 9}}
Tātaihia te 10 mā te pū o -43, kia riro ko \frac{1}{10000000000000000000000000000000000000000000}.
\frac{\frac{279}{125000000000000000000000}}{\sqrt{\frac{167}{5000000000000000000000000000000000000000000}\times 81\times 9}}
Whakareatia te 334 ki te \frac{1}{10000000000000000000000000000000000000000000}, ka \frac{167}{5000000000000000000000000000000000000000000}.
\frac{\frac{279}{125000000000000000000000}}{\sqrt{\frac{13527}{5000000000000000000000000000000000000000000}\times 9}}
Whakareatia te \frac{167}{5000000000000000000000000000000000000000000} ki te 81, ka \frac{13527}{5000000000000000000000000000000000000000000}.
\frac{\frac{279}{125000000000000000000000}}{\sqrt{\frac{121743}{5000000000000000000000000000000000000000000}}}
Whakareatia te \frac{13527}{5000000000000000000000000000000000000000000} ki te 9, ka \frac{121743}{5000000000000000000000000000000000000000000}.
\frac{\frac{279}{125000000000000000000000}}{\frac{\sqrt{121743}}{\sqrt{5000000000000000000000000000000000000000000}}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{121743}{5000000000000000000000000000000000000000000}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{121743}}{\sqrt{5000000000000000000000000000000000000000000}}.
\frac{\frac{279}{125000000000000000000000}}{\frac{27\sqrt{167}}{\sqrt{5000000000000000000000000000000000000000000}}}
Tauwehea te 121743=27^{2}\times 167. Tuhia anō te pūtake rua o te hua \sqrt{27^{2}\times 167} hei hua o ngā pūtake rua \sqrt{27^{2}}\sqrt{167}. Tuhia te pūtakerua o te 27^{2}.
\frac{\frac{279}{125000000000000000000000}}{\frac{27\sqrt{167}}{1000000000000000000000\sqrt{5}}}
Tauwehea te 5000000000000000000000000000000000000000000=1000000000000000000000^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{1000000000000000000000^{2}\times 5} hei hua o ngā pūtake rua \sqrt{1000000000000000000000^{2}}\sqrt{5}. Tuhia te pūtakerua o te 1000000000000000000000^{2}.
\frac{\frac{279}{125000000000000000000000}}{\frac{27\sqrt{167}\sqrt{5}}{1000000000000000000000\left(\sqrt{5}\right)^{2}}}
Whakangāwaritia te tauraro o \frac{27\sqrt{167}}{1000000000000000000000\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{\frac{279}{125000000000000000000000}}{\frac{27\sqrt{167}\sqrt{5}}{1000000000000000000000\times 5}}
Ko te pūrua o \sqrt{5} ko 5.
\frac{\frac{279}{125000000000000000000000}}{\frac{27\sqrt{835}}{1000000000000000000000\times 5}}
Hei whakarea \sqrt{167} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\frac{279}{125000000000000000000000}}{\frac{27\sqrt{835}}{5000000000000000000000}}
Whakareatia te 1000000000000000000000 ki te 5, ka 5000000000000000000000.
\frac{279\times 5000000000000000000000}{125000000000000000000000\times 27\sqrt{835}}
Whakawehe \frac{279}{125000000000000000000000} ki te \frac{27\sqrt{835}}{5000000000000000000000} mā te whakarea \frac{279}{125000000000000000000000} ki te tau huripoki o \frac{27\sqrt{835}}{5000000000000000000000}.
\frac{31}{3\times 25\sqrt{835}}
Me whakakore tahi te 9\times 5000000000000000000000 i te taurunga me te tauraro.
\frac{31\sqrt{835}}{3\times 25\left(\sqrt{835}\right)^{2}}
Whakangāwaritia te tauraro o \frac{31}{3\times 25\sqrt{835}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{835}.
\frac{31\sqrt{835}}{3\times 25\times 835}
Ko te pūrua o \sqrt{835} ko 835.
\frac{31\sqrt{835}}{75\times 835}
Whakareatia te 3 ki te 25, ka 75.
\frac{31\sqrt{835}}{62625}
Whakareatia te 75 ki te 835, ka 62625.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}