Aromātai
48
Tauwehe
2^{4}\times 3
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 6 ^ { - 3 } \cdot 18 ^ { 7 } } { 3 ^ { 10 } } =
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{1}{216}\times 18^{7}}{3^{10}}
Tātaihia te 6 mā te pū o -3, kia riro ko \frac{1}{216}.
\frac{\frac{1}{216}\times 612220032}{3^{10}}
Tātaihia te 18 mā te pū o 7, kia riro ko 612220032.
\frac{2834352}{3^{10}}
Whakareatia te \frac{1}{216} ki te 612220032, ka 2834352.
\frac{2834352}{59049}
Tātaihia te 3 mā te pū o 10, kia riro ko 59049.
48
Whakawehea te 2834352 ki te 59049, kia riro ko 48.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}