Aromātai
\frac{18\sqrt{3}+33}{13}\approx 4.936685734
Tohaina
Kua tāruatia ki te papatopenga
\frac{6+3\sqrt{3}}{4-\sqrt{3}}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{6+3\sqrt{3}}{4-\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 4+\sqrt{3}.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{4^{2}-\left(\sqrt{3}\right)^{2}}
Whakaarohia te \left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{16-3}
Pūrua 4. Pūrua \sqrt{3}.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{13}
Tangohia te 3 i te 16, ka 13.
\frac{24+6\sqrt{3}+12\sqrt{3}+3\left(\sqrt{3}\right)^{2}}{13}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 6+3\sqrt{3} ki ia tau o 4+\sqrt{3}.
\frac{24+18\sqrt{3}+3\left(\sqrt{3}\right)^{2}}{13}
Pahekotia te 6\sqrt{3} me 12\sqrt{3}, ka 18\sqrt{3}.
\frac{24+18\sqrt{3}+3\times 3}{13}
Ko te pūrua o \sqrt{3} ko 3.
\frac{24+18\sqrt{3}+9}{13}
Whakareatia te 3 ki te 3, ka 9.
\frac{33+18\sqrt{3}}{13}
Tāpirihia te 24 ki te 9, ka 33.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}