Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{6+3\sqrt{3}}{4-\sqrt{3}}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{6+3\sqrt{3}}{4-\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 4+\sqrt{3}.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{4^{2}-\left(\sqrt{3}\right)^{2}}
Whakaarohia te \left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{16-3}
Pūrua 4. Pūrua \sqrt{3}.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{13}
Tangohia te 3 i te 16, ka 13.
\frac{24+6\sqrt{3}+12\sqrt{3}+3\left(\sqrt{3}\right)^{2}}{13}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 6+3\sqrt{3} ki ia tau o 4+\sqrt{3}.
\frac{24+18\sqrt{3}+3\left(\sqrt{3}\right)^{2}}{13}
Pahekotia te 6\sqrt{3} me 12\sqrt{3}, ka 18\sqrt{3}.
\frac{24+18\sqrt{3}+3\times 3}{13}
Ko te pūrua o \sqrt{3} ko 3.
\frac{24+18\sqrt{3}+9}{13}
Whakareatia te 3 ki te 3, ka 9.
\frac{33+18\sqrt{3}}{13}
Tāpirihia te 24 ki te 9, ka 33.