Whakaoti mō x
x = \frac{1254}{25} = 50\frac{4}{25} = 50.16
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{6+\frac{1}{5}x}{100+\frac{20}{100}}=\frac{16}{100}
Whakahekea te hautanga \frac{20}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
\frac{6+\frac{1}{5}x}{100+\frac{1}{5}}=\frac{16}{100}
Whakahekea te hautanga \frac{20}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
\frac{6+\frac{1}{5}x}{\frac{500}{5}+\frac{1}{5}}=\frac{16}{100}
Me tahuri te 100 ki te hautau \frac{500}{5}.
\frac{6+\frac{1}{5}x}{\frac{500+1}{5}}=\frac{16}{100}
Tā te mea he rite te tauraro o \frac{500}{5} me \frac{1}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{6+\frac{1}{5}x}{\frac{501}{5}}=\frac{16}{100}
Tāpirihia te 500 ki te 1, ka 501.
\frac{6+\frac{1}{5}x}{\frac{501}{5}}=\frac{4}{25}
Whakahekea te hautanga \frac{16}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{6}{\frac{501}{5}}+\frac{\frac{1}{5}x}{\frac{501}{5}}=\frac{4}{25}
Whakawehea ia wā o 6+\frac{1}{5}x ki te \frac{501}{5}, kia riro ko \frac{6}{\frac{501}{5}}+\frac{\frac{1}{5}x}{\frac{501}{5}}.
6\times \frac{5}{501}+\frac{\frac{1}{5}x}{\frac{501}{5}}=\frac{4}{25}
Whakawehe 6 ki te \frac{501}{5} mā te whakarea 6 ki te tau huripoki o \frac{501}{5}.
\frac{6\times 5}{501}+\frac{\frac{1}{5}x}{\frac{501}{5}}=\frac{4}{25}
Tuhia te 6\times \frac{5}{501} hei hautanga kotahi.
\frac{30}{501}+\frac{\frac{1}{5}x}{\frac{501}{5}}=\frac{4}{25}
Whakareatia te 6 ki te 5, ka 30.
\frac{10}{167}+\frac{\frac{1}{5}x}{\frac{501}{5}}=\frac{4}{25}
Whakahekea te hautanga \frac{30}{501} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{10}{167}+\frac{1}{501}x=\frac{4}{25}
Whakawehea te \frac{1}{5}x ki te \frac{501}{5}, kia riro ko \frac{1}{501}x.
\frac{1}{501}x=\frac{4}{25}-\frac{10}{167}
Tangohia te \frac{10}{167} mai i ngā taha e rua.
\frac{1}{501}x=\frac{668}{4175}-\frac{250}{4175}
Ko te maha noa iti rawa atu o 25 me 167 ko 4175. Me tahuri \frac{4}{25} me \frac{10}{167} ki te hautau me te tautūnga 4175.
\frac{1}{501}x=\frac{668-250}{4175}
Tā te mea he rite te tauraro o \frac{668}{4175} me \frac{250}{4175}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{501}x=\frac{418}{4175}
Tangohia te 250 i te 668, ka 418.
x=\frac{418}{4175}\times 501
Me whakarea ngā taha e rua ki te 501, te tau utu o \frac{1}{501}.
x=\frac{418\times 501}{4175}
Tuhia te \frac{418}{4175}\times 501 hei hautanga kotahi.
x=\frac{209418}{4175}
Whakareatia te 418 ki te 501, ka 209418.
x=\frac{1254}{25}
Whakahekea te hautanga \frac{209418}{4175} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 167.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}